ﻻ يوجد ملخص باللغة العربية
Systems with interacting degrees of freedom play a prominent role in stochastic thermodynamics. Our aim is to use the concept of detached path probabilities and detached entropy production for bipartite Markov processes and elaborate on a series of special cases including measurement-feedback systems, sensors and hidden Markov models. For these special cases we show that fluctuation theorems involving the detached entropy production recover known results which have been obtained separately before. Additionally, we show that the fluctuation relation for the detached entropy production can be used in model selection for data stemming from a hidden Markov model. We discuss the relation to previous approaches including those which use information flow or learning rate to quantify the influence of one subsystem on the other. In conclusion, we present a complete framework with which to find fluctuation relations for coupled systems.
Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and inves
We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems
For diffusive stochastic dynamics, the probability to observe any individual trajectory is vanishingly small, making it unclear how to experimentally validate theoretical results for ratios of path probabilities. We provide the missing link between t
We provide a stochastic thermodynamic description across scales for $N$ identical units with all-to-all interactions that are driven away from equilibrium by different reservoirs and external forces. We start at the microscopic level with Poisson rat
We present a theory of spinor superfluidity in a two-species heteronuclear ultracold fermionic atomic gas consisting of arbitrary half-integer spin and one-half spin atoms. In particular, we focus on the magnetism of the superfluid phase and determin