ترغب بنشر مسار تعليمي؟ اضغط هنا

Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

446   0   0.0 ( 0 )
 نشر من قبل Hung-Yi Pu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, wherefrom inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite, and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons concentrate. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/sub-millimeter (mm/sub-mm) very-long-baseline interferometric (VLBI) observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.

قيم البحث

اقرأ أيضاً

A fundamental difference between a neutron star (NS) and a black hole (BH) is the absence of a physical surface in the latter. For this reason, any remaining kinetic energy of the matter accreting onto a BH is advected inside its event horizon. In th e case of an NS, on the contrary, accreting material is decelerated on the NS surface, and its kinetic energy is eventually radiated away. Copious soft photons produced by the NS surface will affect the properties of the Comptonised component dominating spectra of X-ray binaries in the hard state. Thus, parameters of the Comptonised spectra -- the electron temperature $kT_{rm e}$ and the Compton $y$-parameter, could serve as an important tool for distinguishing BHs from NSs. In this paper, we systematically analyse heretofore the largest sample of spectra from the BH and NS X-ray binaries in the hard state for this purpose, using archival RXTE/PCA and RXTE/HEXTE observations. We find that the BHs and NSs occupy distinctly different regions in the $y-kT_{rm e}$ plane with NSs being characterised by systematically lower values of $y$-parameter and electron temperature. Due to the shape of the boundary between BHs and NSs on the $y-kT_{rm e}$ plane, their one-dimensional $y$ and $kT_{rm e}$ distributions have some overlap. A cleaner one parameter diagnostic of the nature of the compact object in X-ray binaries is provided by the Compton amplification factor $A$, with the boundary between BHs and NSs lying at $Aapprox 3.5-4$. This is by far the most significant detection of the imprint of the event horizon on the X-ray spectra for stable stellar-mass BHs.
In this article, we study Beltrami equilibria for plasmas in near the horizon of a spinning black hole, and develop a framework for constructing the magnetic field profile in the near horizon limit for Clebsch flows in the single-fluid approximation. We find that the horizon profile for the magnetic field is shown to satisfy a system of first-order coupled ODEs dependent on a boundary condition for the magnetic field. For states in which the generalized vorticity vanishes (the generalized `superconducting plasma state), the horizon profile becomes independent of the boundary condition, and depend only on the thermal properties of the plasma. Our analysis makes use of the full form for the time-independent Amperes law in the 3+1 formalism, generalizing earlier conclusions for the case of vanishing vorticity, namely the complete magnetic field expulsion near the equator of an axisymmetric black horizon assuming that the thermal properties of the plasma are symmetric about the equatorial plane. For the general case, we find and discuss additional conditions required for the expulsion of magnetic fields at given points on the black hole horizon. We perform a length scale analysis which indicates the emergence of two distinct length scales characterizing the magnetic field variation and strength of the Beltrami term, respectively.
Interferometers, such as the Event Horizon Telescope (EHT), do not directly observe the images of sources but rather measure their Fourier components at discrete spatial frequencies up to a maximum value set by the longest baseline in the array. Cons truction of images from the Fourier components or analysis of them with high-resolution models requires careful treatment of fine source structure nominally beyond the array resolution. The primary EHT targets, Sgr A* and M87, are expected to have black-hole shadows with sharp edges and strongly filamentary emission from the surrounding plasma on scales much smaller than those probed by the currently largest baselines. We show that for aliasing not to affect images reconstructed with regularized maximum likelihood methods and model images that are directly compared to the data, the sampling of these images (i.e., their pixel spacing) needs to be significantly finer than the scale probed by the largest baseline in the array. Using GRMHD simulations of black-hole images, we estimate the maximum allowable pixel spacing to be approximately equal to (1/8)GM/c^2; for both of the primary EHT targets, this corresponds to an angular pixel size of <0.5 microarcseconds. With aliasing under control, we then advocate use of the second-order Butterworth filter with a cut-off scale equal to the maximum array baseline as optimal for visualizing the reconstructed images. In contrast to the traditional Gaussian filters, this Butterworth filter retains most of the power at the scales probed by the array while suppressing the fine image details for which no data exist.
Simulated images of a black hole surrounded by optically thin emission typically display two main features: a central brightness depression and a narrow, bright photon ring consisting of strongly lensed images superposed on top of the direct emission . The photon ring closely tracks a theoretical curve on the image plane corresponding to light rays that asymptote to unstably bound photon orbits around the black hole. This critical curve has a size and shape that are purely governed by the Kerr geometry; in contrast, the size, shape, and depth of the observed brightness depression all depend on the details of the emission region. For instance, images of spherical accretion models display a distinctive dark region -- the black hole shadow -- that completely fills the photon ring. By contrast, in models of equatorial disks extending to the black holes event horizon, the darkest region in the image is restricted to a much smaller area -- an inner shadow -- whose edge lies near the direct lensed image of the equatorial horizon. Using both semi-analytic models and general relativistic magnetohydrodynamic (GRMHD) simulations, we demonstrate that the photon ring and inner shadow may be simultaneously visible in submillimeter images of M87*, where magnetically arrested disk (MAD) simulations predict that the emission arises in a thin region near the equatorial plane. We show that the relative size, shape, and centroid of the photon ring and inner shadow can be used to estimate the black hole mass and spin, breaking degeneracies in measurements of these quantities that rely on the photon ring alone. Both features may be accessible to direct observation via high-dynamic-range images with a next-generation Event Horizon Telescope.
The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over 4 years. Closure phases, the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180-degree rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا