ﻻ يوجد ملخص باللغة العربية
Imitation learning algorithms learn viable policies by imitating an experts behavior when reward signals are not available. Generative Adversarial Imitation Learning (GAIL) is a state-of-the-art algorithm for learning policies when the experts behavior is available as a fixed set of trajectories. We evaluate in terms of the experts cost function and observe that the distribution of trajectory-costs is often more heavy-tailed for GAIL-agents than the expert at a number of benchmark continuous-control tasks. Thus, high-cost trajectories, corresponding to tail-end events of catastrophic failure, are more likely to be encountered by the GAIL-agents than the expert. This makes the reliability of GAIL-agents questionable when it comes to deployment in risk-sensitive applications like robotic surgery and autonomous driving. In this work, we aim to minimize the occurrence of tail-end events by minimizing tail risk within the GAIL framework. We quantify tail risk by the Conditional-Value-at-Risk (CVaR) of trajectories and develop the Risk-Averse Imitation Learning (RAIL) algorithm. We observe that the policies learned with RAIL show lower tail-end risk than those of vanilla GAIL. Thus the proposed RAIL algorithm appears as a potent alternative to GAIL for improved reliability in risk-sensitive applications.
We study risk-sensitive imitation learning where the agents goal is to perform at least as well as the expert in terms of a risk profile. We first formulate our risk-sensitive imitation learning setting. We consider the generative adversarial approac
We present a mean-variance policy iteration (MVPI) framework for risk-averse control in a discounted infinite horizon MDP optimizing the variance of a per-step reward random variable. MVPI enjoys great flexibility in that any policy evaluation method
We consider the problem of designing policies for partially observable Markov decision processes (POMDPs) with dynamic coherent risk objectives. Synthesizing risk-averse optimal policies for POMDPs requires infinite memory and thus undecidable. To ov
This paper proposes Self-Imitation Learning (SIL), a simple off-policy actor-critic algorithm that learns to reproduce the agents past good decisions. This algorithm is designed to verify our hypothesis that exploiting past good experiences can indir
We consider the stochastic shortest path planning problem in MDPs, i.e., the problem of designing policies that ensure reaching a goal state from a given initial state with minimum accrued cost. In order to account for rare but important realizations