ﻻ يوجد ملخص باللغة العربية
We find the exact Bloch oscillations in zigzag arrays of curved optical waveguides under the influence of arbitrary long-range coupling. The curvature induces a linear transverse potential gradient in the equations of the light evolution. In the case of arrays with second-order coupling, steady states can be obtained as linear combinations of Bessel functions of integer index. The corresponding eigenvalues are equally spaced and form the well-known Wannier-Stark ladder, the spacing being independent of the second-order coupling. We also solve exactly the wave packet dynamics and compare it with experimental results. Accordingly we find that a broad optical pulse performs Bloch oscillations. Frequency doubling of the fundamental Bloch frequency sets up at finite values of the second-order coupling. On the contrary when a single waveguide is initially excited, a breathing mode is activated with no signature of Bloch oscillations. We present a generalization of our results to waveguide arrays subject to long-range coupling. In the general case the centroid of the wave packet shows the occurrence of multiples of the Bloch frequency up to the order of the interaction.
We study the influences to the discrete soliton (DS) by introducing linearly long-range nonlocal interactions, which give rise to the off-diagonal elements of the linearly coupled matrix in the discrete nonlinear schrodinger equation to be filled by
We experimentally demonstrate broadband waveguide crossing arrays showing ultra low loss down to $0.04,$dB/crossing ($0.9%$), matching theory, and crosstalk suppression over $35,$dB, in a CMOS-compatible geometry. The principle of operation is the ta
We theoretically study light propagation in guided Bloch surface waves (BSWs) supported by photonic crystal ridges. We demonstrate that low propagation losses can be achieved just by a proper design of the multilayer to obtain photonic band gaps for
We perform phase-sensitive near-field scanning optical microscopy on photonic-crystal waveguides. The observed intricate field patterns are analyzed by spatial Fourier transformations, revealing several guided TE- and TM-like modes. Using the reconst
We study the dynamics of an electron subjected to a uniform electric field within a tight-binding model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed to have a power spectrum $S(k) sim 1/k^{alpha}$