ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface rotation of Kepler red giant stars

71   0   0.0 ( 0 )
 نشر من قبل Rafael A. Garcia
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kepler allows the measurement of starspot variability in a large sample of field red giants for the first time. With a new method that combines autocorrelation and wavelet decomposition, we measure 361 rotation periods from the full set of 17,377 oscillating red giants in our sample. This represents 2.08% of the stars, consistent with the fraction of spectroscopically detected rapidly rotating giants in the field. The remaining stars do not show enough variability to allow us to measure a reliable surface rotation period. Because the stars with detected rotation periods have measured oscillations, we can infer their global properties, e.g. mass and radius, and quantitatively evaluate the predictions of standard stellar evolution models as a function of mass. Consistent with results for cluster giants when we consider only the 4881 intermediate-mass stars, M>2.0 M$_odot$ from our full red giant sample, we do not find the enhanced rates of rapid rotation expected from angular momentum conservation. We therefore suggest that either enhanced angular momentum loss or radial differential rotation must be occurring in these stars. Finally, when we examine the 575 low-mass (M<1.1 M$_odot$) red clump stars in our sample, which were expected to exhibit slow (non-detectable) rotation, 15% of them actually have detectable rotation. This suggests a high rate of interactions and stellar mergers on the red giant branch.

قيم البحث

اقرأ أيضاً

The first public release of long-cadence stellar photometric data collected by the NASA Kepler mission has now been made available. In this paper we characterise the red-giant (G-K) stars in this large sample in terms of their solar-like oscillations . We use published methods and well-known scaling relations in the analysis. Just over 70% of the red giants in the sample show detectable solar-like oscillations, and from these oscillations we are able to estimate the fundamental properties of the stars. This asteroseismic analysis reveals different populations: low-luminosity H-shell burning red-giant branch stars, cool high-luminosity red giants on the red-giant branch and He-core burning clump and secondary-clump giants.
Frequencies of acoustic and mixed modes in red giant stars are now determined with high precision thanks to the long continuous observations provided by the NASA Kepler mission. Here we consider the eigenfrequencies of nineteen low-luminosity red gia nt stars selected by Corsaro et al. (2015) for a detailed peak-bagging analysis. Our objective is to obtain stellar parameters by using individual mode frequencies and spectroscopic information. We use a forward modelling technique based on a minimization procedure combining the frequencies of the p modes, the period spacing of the dipolar modes, and the spectroscopic data. Consistent results between the forward modelling technique and values derived from the seismic scaling relations are found but the errors derived using the former technique are lower. The average error for log g is 0.002 dex, compared to 0.011 dex from the frequency of maximum power and 0.10 dex from the spectroscopic analysis. Relative errors in the masses and radii are on average 2 and 0.5 per cent respectively, compared to 3 and 2 per cent derived from the scaling relations. No reliable determination of the initial helium abundances and the mixing length parameters could be made. Finally, for our grid of models with a given input physics, we found that low-mass stars require higher values of the overshooting parameter.
The space missions CoRoT and Kepler provide high quality data that allow us to test the transport of angular momentum in stars by the seismic determination of the internal rotation profile. Our aim is to test the validity of the seismic diagnostics f or red giants rotation that are based on a perturbative method and to investigate the oscillation spectra when the validity does not hold. We use a non-perturbative approach implemented in the ACOR code (Ouazzani et al. 2012) that accounts for the effect of rotation on pulsations, and solves the pulsation eigenproblem directly for dipolar oscillation modes. We find that the limit of the perturbation to first order can be expressed in terms of the rotational splitting compared to the frequency separation between consecutive dipolar modes. Above this limit, non-perturbative computations are necessary but only one term in the spectral expansion of modes is sufficient as long as the core rotation rate remains significantly smaller than the pulsation frequencies. Each family of modes with different azimuthal symmetry, m, has to be considered separately. In particular, in case of rapid core rotation, the density of the spectrum differs significantly from one m-family of modes to another, so that the differences between the period spacings associated with each m-family can constitute a promising guideline toward a proper seismic diagnostic for rotation.
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.
Obtaining accurate and precise masses and ages for large numbers of giant stars is of great importance for unraveling the assemblage history of the Galaxy. In this paper, we estimate masses and ages of 6940 red giant branch (RGB) stars with asterosei smic parameters deduced from emph{Kepler} photometry and stellar atmospheric parameters derived from LAMOST spectra. The typical uncertainties of mass is a few per cent, and that of age is $sim$,20 per cent. The sample stars reveal two separate sequences in the age -- [$alpha$/Fe] relation -- a high--$alpha$ sequence with stars older than $sim$,8,Gyr and a low--$alpha$ sequence composed of stars with ages ranging from younger than 1,Gyr to older than 11,Gyr. We further investigate the feasibility of deducing ages and masses directly from LAMOST spectra with a machine learning method based on kernel based principal component analysis, taking a sub-sample of these RGB stars as a training data set. We demonstrate that ages thus derived achieve an accuracy of $sim$,24 per cent. We also explored the feasibility of estimating ages and masses based on the spectroscopically measured carbon and nitrogen abundances. The results are quite satisfactory and significantly improved compared to the previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا