ترغب بنشر مسار تعليمي؟ اضغط هنا

Asteroseismology of 19 low-luminosity red giant stars from Kepler

102   0   0.0 ( 0 )
 نشر من قبل Rafael A. Garcia
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Frequencies of acoustic and mixed modes in red giant stars are now determined with high precision thanks to the long continuous observations provided by the NASA Kepler mission. Here we consider the eigenfrequencies of nineteen low-luminosity red giant stars selected by Corsaro et al. (2015) for a detailed peak-bagging analysis. Our objective is to obtain stellar parameters by using individual mode frequencies and spectroscopic information. We use a forward modelling technique based on a minimization procedure combining the frequencies of the p modes, the period spacing of the dipolar modes, and the spectroscopic data. Consistent results between the forward modelling technique and values derived from the seismic scaling relations are found but the errors derived using the former technique are lower. The average error for log g is 0.002 dex, compared to 0.011 dex from the frequency of maximum power and 0.10 dex from the spectroscopic analysis. Relative errors in the masses and radii are on average 2 and 0.5 per cent respectively, compared to 3 and 2 per cent derived from the scaling relations. No reliable determination of the initial helium abundances and the mixing length parameters could be made. Finally, for our grid of models with a given input physics, we found that low-mass stars require higher values of the overshooting parameter.



قيم البحث

اقرأ أيضاً

The successful launches of the CoRoT and Kepler space missions have led to the detections of solar-like oscillations in large samples of red-giant stars. The large numbers of red giants with observed oscillations make it possible to investigate the p roperties of the sample as a whole: ensemble asteroseismology. In this article we summarise ensemble asteroseismology results obtained from data released by the Kepler Science Team (~150,000 field stars) as presented by Hekker et al. (2011b) and for the clusters NGC 6791, NGC 6811 and NGC 6819 (Hekker et al. 2011a) and we discuss the importance of such studies.
Kepler allows the measurement of starspot variability in a large sample of field red giants for the first time. With a new method that combines autocorrelation and wavelet decomposition, we measure 361 rotation periods from the full set of 17,377 osc illating red giants in our sample. This represents 2.08% of the stars, consistent with the fraction of spectroscopically detected rapidly rotating giants in the field. The remaining stars do not show enough variability to allow us to measure a reliable surface rotation period. Because the stars with detected rotation periods have measured oscillations, we can infer their global properties, e.g. mass and radius, and quantitatively evaluate the predictions of standard stellar evolution models as a function of mass. Consistent with results for cluster giants when we consider only the 4881 intermediate-mass stars, M>2.0 M$_odot$ from our full red giant sample, we do not find the enhanced rates of rapid rotation expected from angular momentum conservation. We therefore suggest that either enhanced angular momentum loss or radial differential rotation must be occurring in these stars. Finally, when we examine the 575 low-mass (M<1.1 M$_odot$) red clump stars in our sample, which were expected to exhibit slow (non-detectable) rotation, 15% of them actually have detectable rotation. This suggests a high rate of interactions and stellar mergers on the red giant branch.
The recently launched TESS mission is for the first time giving us the potential to perform inference asteroseismology across the whole sky. TESS observed the Kepler field entirely in its Sector 14 and partly in Sector 15. Here, we seek to detect osc illations in the red giants observed by TESS in the Kepler field of view. Using the full 4-yr Kepler results as the ground truth, we aim to characterise how well the seismic signal can be detected using TESS data. Because our data are based on one and two sectors of observation, our results will be representative of what one can expect for the vast majority of the TESS data. We detect clear oscillations in $sim$3000 stars with another $sim$1000 borderline (low S/N) cases, all of which yield a measurement of the frequency of maximum acoustic power, numax. In comparison, a simple calculation predicts $sim$4500 stars would show detectable oscillations. Of the clear detections we reliably measure the frequency separation between overtone radial modes, dnu, in 570 stars, meaning an overall dnu yield of 20%, which splits into a one-sector yield of 14% and a two-sector yield of 26%. These yields imply that typical (1-2 sector) TESS data will result in significant detection biases. Hence, to boost the number of stars, one might need to use only numax as the seismic input for stellar property estimation. On the up side, we find little or no bias in the seismic measurements and typical scatter relative to the Kepler `truth is about 5-6% in numax and 2-3% in dnu. These values, coupled with typical uncertainties in parallax, Teff, and Fe/H in a grid-based approach, would provide internal uncertainties of 3% in inferred stellar radius, 6% in mass and 20% in age. Finally, despite relatively large pixels of TESS, we find red giant seismology is not expected to be significantly affected by blending for stars with Tmag < 12.5.
We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30-minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations (Delta nu) and the frequency of maximum power (nu_max). We focus on a sample of 50 low-luminosity stars (nu_max > 100 muHz, L <~ 30 L_sun) having high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star-formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l=3. Measuring the small separation between l=0 and l=2 allows us to plot the so-called C-D diagram of delta nu_02 versus Delta nu. The small separation delta nu_01 of l=1 from the midpoint of adjacent l=0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l=1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.
The first public release of long-cadence stellar photometric data collected by the NASA Kepler mission has now been made available. In this paper we characterise the red-giant (G-K) stars in this large sample in terms of their solar-like oscillations . We use published methods and well-known scaling relations in the analysis. Just over 70% of the red giants in the sample show detectable solar-like oscillations, and from these oscillations we are able to estimate the fundamental properties of the stars. This asteroseismic analysis reveals different populations: low-luminosity H-shell burning red-giant branch stars, cool high-luminosity red giants on the red-giant branch and He-core burning clump and secondary-clump giants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا