ﻻ يوجد ملخص باللغة العربية
For a toric pair $(X, D)$, where $X$ is a projective toric variety of dimension $d-1geq 1$ and $D$ is a very ample $T$-Cartier divisor, we show that the Hilbert-Kunz density function $HKd(X, D)(lambda)$ is the $d-1$ dimensional volume of ${overline {mathcal P}}_D cap {z= lambda}$, where ${overline {mathcal P}}_Dsubset {mathbb R}^d$ is a compact $d$-dimensional set (which is a finite union of convex polytopes). We also show that, for $kgeq 1$, the function $HKd(X, kD)$ can be replaced by another compactly supported continuous function $varphi_{kD}$ which is `linear in $k$. This gives the formula for the associated coordinate ring $(R, {bf m})$: $$lim_{kto infty}frac{e_{HK}(R, {bf m}^k) - e_0(R, {bf m}^k)/d!}{k^{d-1}} = frac{e_0(R, {bf m})}{(d-1)!}int_0^inftyvarphi_D(lambda)dlambda, $$ where $varphi_D$ (see Proposition~1.2) is solely determined by the shape of the polytope $P_D$, associated to the toric pair $(X, D)$. Moreover $varphi_D$ is a multiplicative function for Segre products. This yields explicit computation of $varphi_D$ (and hence the limit), for smooth Fano toric surfaces with respect to anticanonical divisor. In general, due to this formulation in terms of the polytope $P_D$, one can explicitly compute the limit for two dimensional toric pairs and their Segre products. We further show that (Theorem~6.3) the renormailzed limit takes the minimum value if and only if the polytope $P_D$ tiles the space $M_{mathbb R} = {mathbb R}^{d-1}$ (with the lattice $M = {mathbb Z}^{d-1}$). As a consequence, one gets an algebraic formulation of the tiling property of any rational convex polytope.
For a pair $(M, I)$, where $M$ is finitely generated graded module over a standard graded ring $R$ of dimension $d$, and $I$ is a graded ideal with $ell(R/I) < infty$, we introduce a new invariant $HKd(M, I)$ called the {em Hilbert-Kunz density funct
We prove the existence of HK density function for a pair $(R, I)$, where $R$ is a ${mathbb N}$-graded domain of finite type over a perfect field and $Isubset R$ is a graded ideal of finite colength. This generalizes our earlier result where one prove
We show that the Hilbert-Kunz multiplicities of the reductions to positive characteristics of an irreducible projective curve in characteristic 0 have a well-defined limit as the characteristic tends to infinity.
We prove that, analogous to the HK density function, (used for studying the Hilbert-Kunz multiplicity, the leading coefficient of the HK function), there exists a $beta$-density function $g_{R, {bf m}}:[0,infty)longrightarrow {mathbb R}$, where $(R,
We had shown earlier that for a standard graded ring $R$ and a graded ideal $I$ in characteristic $p>0$, with $ell(R/I) <infty$, there exists a compactly supported continuous function $f_{R, I}$ whose Riemann integral is the HK multiplicity $e_{HK}(R