ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of Multiple Features and Modeling Methods for Text-dependent Speaker Verification

177   0   0.0 ( 0 )
 نشر من قبل Yi Liu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Text-dependent speaker verification is becoming popular in the speaker recognition society. However, the conventional i-vector framework which has been successful for speaker identification and other similar tasks works relatively poorly in this task. Researchers have proposed several new methods to improve performance, but it is still unclear that which model is the best choice, especially when the pass-phrases are prompted during enrollment and test. In this paper, we introduce four modeling methods and compare their performance on the newly published RedDots dataset. To further explore the influence of different frame alignments, Viterbi and forward-backward algorithms are both used in the HMM-based models. Several bottleneck features are also investigated. Our experiments show that, by explicitly modeling the lexical content, the HMM-based modeling achieves good results in the fixed-phrase condition. In the prompted-phrase condition, GMM-HMM and i-vector/HMM are not as successful. In both conditions, the forward-backward algorithm brings more benefits to the i-vector/HMM system. Additionally, we also find that even though bottleneck features perform well for text-independent speaker verification, they do not outperform MFCCs on the most challenging Imposter-Correct trials on RedDots.



قيم البحث

اقرأ أيضاً

There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV) . However, a moderate success has been achieved. A recent study [1] presented a time contrastive learning (TCL) concept to explore the non-stationarity of brain signals for classification of brain states. Speech signals have similar non-stationarity property, and TCL further has the advantage of having no need for labeled data. We therefore present a TCL based BN feature extraction method. The method uniformly partitions each speech utterance in a training dataset into a predefined number of multi-frame segments. Each segment in an utterance corresponds to one class, and class labels are shared across utterances. DNNs are then trained to discriminate all speech frames among the classes to exploit the temporal structure of speech. In addition, we propose a segment-based unsupervised clustering algorithm to re-assign class labels to the segments. TD-SV experiments were conducted on the RedDots challenge database. The TCL-DNNs were trained using speech data of fixed pass-phrases that were excluded from the TD-SV evaluation set, so the learned features can be considered phrase-independent. We compare the performance of the proposed TCL bottleneck (BN) feature with those of short-time cepstral features and BN features extracted from DNNs discriminating speakers, pass-phrases, speaker+pass-phrase, as well as monophones whose labels and boundaries are generated by three different automatic speech recognition (ASR) systems. Experimental results show that the proposed TCL-BN outperforms cepstral features and speaker+pass-phrase discriminant BN features, and its performance is on par with those of ASR derived BN features. Moreover,....
In this paper, we propose a new differentiable neural network alignment mechanism for text-dependent speaker verification which uses alignment models to produce a supervector representation of an utterance. Unlike previous works with similar approach es, we do not extract the embedding of an utterance from the mean reduction of the temporal dimension. Our system replaces the mean by a phrase alignment model to keep the temporal structure of each phrase which is relevant in this application since the phonetic information is part of the identity in the verification task. Moreover, we can apply a convolutional neural network as front-end, and thanks to the alignment process being differentiable, we can train the whole network to produce a supervector for each utterance which will be discriminative with respect to the speaker and the phrase simultaneously. As we show, this choice has the advantage that the supervector encodes the phrase and speaker information providing good performance in text-dependent speaker verification tasks. In this work, the process of verification is performed using a basic similarity metric, due to simplicity, compared to other more elaborate models that are commonly used. The new model using alignment to produce supervectors was tested on the RSR2015-Part I database for text-dependent speaker verification, providing competitive results compared to similar size networks using the mean to extract embeddings.
In this paper, we focus on improving the performance of the text-dependent speaker verification system in the scenario of limited training data. The speaker verification system deep learning based text-dependent generally needs a large scale text-dep endent training data set which could be labor and cost expensive, especially for customized new wake-up words. In recent studies, voice conversion systems that can generate high quality synthesized speech of seen and unseen speakers have been proposed. Inspired by those works, we adopt two different voice conversion methods as well as the very simple re-sampling approach to generate new text-dependent speech samples for data augmentation purposes. Experimental results show that the proposed method significantly improves the Equal Error Rare performance from 6.51% to 4.51% in the scenario of limited training data.
J-vector has been proved to be very effective in text-dependent speaker verification with short-duration speech. However, the current state-of-the-art back-end classifiers, e.g. joint Bayesian model, cannot make full use of such deep features. In thi s paper, we generalize the standard joint Bayesian approach to model the multi-faceted information in the j-vector explicitly and jointly. In our generalization, the j-vector was modeled as a result derived by a generative Double Joint Bayesian (DoJoBa) model, which contains several kinds of latent variables. With DoJoBa, we are able to explicitly build a model that can combine multiple heterogeneous information from the j-vectors. In verification step, we calculated the likelihood to describe whether the two j-vectors having consistent labels or not. On the public RSR2015 data corpus, the experimental results showed that our approach can achieve 0.02% EER and 0.02% EER for impostor wrong and impostor correct cases respectively.
95 - Xiaoyi Qin , Hui Bu , Ming Li 2019
This paper presents a far-field text-dependent speaker verification database named HI-MIA. We aim to meet the data requirement for far-field microphone array based speaker verification since most of the publicly available databases are single channel close-talking and text-independent. The database contains recordings of 340 people in rooms designed for the far-field scenario. Recordings are captured by multiple microphone arrays located in different directions and distance to the speaker and a high-fidelity close-talking microphone. Besides, we propose a set of end-to-end neural network based baseline systems that adopt single-channel data for training. Moreover, we propose a testing background aware enrollment augmentation strategy to further enhance the performance. Results show that the fusion systems could achieve 3.29% EER in the far-field enrollment far field testing task and 4.02% EER in the close-talking enrollment and far-field testing task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا