ﻻ يوجد ملخص باللغة العربية
We present axisymmetric numerical simulations of radiatively inefficient accretion flows onto black holes combining general relativity, magnetohydrodynamics, self-consistent electron thermodynamics, and frequency-dependent radiation transport. We investigate a range of accretion rates up to $10^{-5} dot{M}_{mathrm{Edd}}$ onto a $10^8 M_{odot}$ black hole with spin $a_{star} = 0.5$. We report on averaged flow thermodynamics as a function of accretion rate. We present the spectra of outgoing radiation and find that it varies strongly with accretion rate, from synchrotron-dominated in the radio at low $dot{M}$ to inverse Compton-dominated at our highest $dot{M}$. In contrast to canonical analytic models, we find that by $dot{M} approx 10^{-5} dot{M}_{mathrm{Edd}}$, the flow approaches $sim 1%$ radiative efficiency, with much of the radiation due to inverse Compton scattering off Coulomb-heated electrons far from the black hole. These results have broad implications for modeling of accreting black holes across a large fraction of the accretion rates realized in observed systems.
We present axisymmetric two-temperature general relativistic radiation magnetohydrodynamic (GRRMHD) simulations of the inner region of the accretion flow onto the supermassive black hole M87. We address uncertainties from previous modeling efforts th
We report results from general relativistic radiation MHD (GRRMHD) simulations of a super-Eddington black hole (BH) accretion disk formed as a result of a tidal disruption event (TDE). We consider the fiducial case of a solar mass star on a mildly pe
I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole ac
A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black
A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accr