ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-term stellar activity variations and their effect on radial-velocity measurements

96   0   0.0 ( 0 )
 نشر من قبل Jean Costes
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-term stellar activity variations can affect the detectability of long-period and Earth-analogue extrasolar planets. We have, for 54 stars, analysed the long-term trend of five activity indicators: log$R_mathrm{{HK}}$, the cross-correlation function (CCF) bisector span, CCF full-width-at-half-maximum, CCF contrast, and the area of the Gaussian fit to the CCF; and studied their correlation with the RVs. The sign of the correlations appears to vary as a function of stellar spectral type, and the transition in sign signals a noteworthy change in the stellar activity properties where earlier type stars appear more plage dominated. These transitions become more clearly defined when considered as a function of the convective zone depth. Therefore, it is the convective zone depth (which can be altered by stellar metallicity) that appears to be the underlying fundamental parameter driving the observed activity correlations. In addition, for most of the stars, we find that the RVs become increasingly red-shifted as activity levels increase, which can be explained by the increase in the suppression of convective blue-shift. However, we also find a minority of stars where the RVs become increasingly blue-shifted as activity levels increase. Finally, using the correlation found between activity indicators and RVs, we removed RV signals generated by long-term changes in stellar activity. We find that performing simple cleaning of such long-term signals enables improved planet detection at longer orbital periods.

قيم البحث

اقرأ أيضاً

We investigate the nature of the long-period radial velocity variations in Alpha Tau first reported over 20 years ago. We analyzed precise stellar radial velocity measurements for Alpha Tau spanning over 30 years. An examination of the Halpha and Ca II 8662 spectral lines, and Hipparcos photometry was also done to help discern the nature of the long-period radial velocity variations. Our radial velocity data show that the long-period, low amplitude radial velocity variations are long-lived and coherent. Furthermore, Halpha equivalent width measurements and Hipparcos photometry show no significant variations with this period. Another investigation of this star established that there was no variability in the spectral line shapes with the radial velocity period. An orbital solution results in a period of P = 628.96 +/- 0.90 d, eccentricity, e = 0.10 +/- 0.05, and a radial velocity amplitude, K = 142.1 +/- 7.2 m/s. Evolutionary tracks yield a stellar mass of 1.13 +/- 0.11 M_sun, which corresponds to a minimum companion mass of 6.47 +/- 0.53 M_Jup with an orbital semi-major axis of a = 1.46 +/- 0.27 AU. After removing the orbital motion of the companion, an additional period of ~ 520 d is found in the radial velocity data, but only in some time spans. A similar period is found in the variations in the equivalent width of Halpha and Ca II. Variations at one-third of this period are also found in the spectral line bisector measurements. The 520 d period is interpreted as the rotation modulation by stellar surface structure. Its presence, however, may not be long-lived, and it only appears in epochs of the radial velocity data separated by $sim$ 10 years. This might be due to an activity cycle. The data presented here provide further evidence of a planetary companion to Alpha Tau, as well as activity-related radial velocity variations.
The CoRoT satellite has recently discovered the transits of a telluric planet across the disc of a late-type magnetically active star dubbed CoRoT-7, while a second planet has been detected after filtering out the radial velocity (hereafter RV) varia tions due to stellar activity. We investigate the magnetic activity of CoRoT-7 and use the results for a better understanding of its impact on stellar RV variations. We derive the longitudinal distribution of active regions on CoRoT-7 from a maximum entropy spot model of the CoRoT light curve. Assuming that each active region consists of dark spots and bright faculae in a fixed proportion, we synthesize the expected RV variations. Active regions are mainly located at three active longitudes which appear to migrate at different rates, probably as a consequence of surface differential rotation, for which a lower limit of Delta Omega / Omega = 0.058 pm 0.017 is found. The synthesized activity-induced RV variations reproduce the amplitude of the observed RV curve and are used to study the impact of stellar activity on planetary detection. In spite of the non-simultaneous CoRoT and HARPS observations, our study confirms the validity of the method previously adopted to filter out RV variations induced by stellar activity. We find a false-alarm probability < 0.01 percent that the RV oscillations attributed to CoRoT-7b and CoRoT-7c are spurious effects of noise and activity. Additionally, our model suggests that other periodicities found in the observed RV curve of CoRoT-7 could be explained by active regions whose visibility is modulated by a differential stellar rotation with periods ranging from 23.6 to 27.6 days.
The search for Earth-like planets around late-type stars using ultra-stable spectrographs requires a very precise characterization of the stellar activity and the magnetic cycle of the star, since these phenomena induce radial velocity (RV) signals t hat can be misinterpreted as planetary signals. Among the nearby stars, we have selected Barnards Star (Gl 699) to carry out a characterization of these phenomena using a set of spectroscopic data that covers about 14.5 years and comes from seven different spectrographs: HARPS, HARPS-N, CARMENES, HIRES, UVES, APF, and PFS; and a set of photometric data that covers about 15.1 years and comes from four different photometric sources: ASAS, FCAPT-RCT, AAVSO, and SNO. We have measured different chromospheric activity indicators (H$alpha$, Ca~{sc II}~HK and Na I D), as well as the FWHM of the cross-correlation function computed for a sub-set of the spectroscopic data. The analysis of Generalized Lomb-Scargle periodograms of the time series of different activity indicators reveals that the rotation period of the star is 145 $pm$ 15 days, consistent with the expected rotation period according to the low activity level of the star and previous claims. The upper limit of the predicted activity-induced RV signal corresponding to this rotation period is about 1 m/s. We also find evidence of a long-term cycle of 10 $pm$ 2 years that is consistent with previous estimates of magnetic cycles from photometric time series in other M stars of similar activity levels. The available photometric data of the star also support the detection of both the long-term and the rotation signals.
124 - Nad`ege Meunier 2021
Stellar activity due to different processes (magnetic activity, photospheric flows) affects the measurement of radial velocities (RV). Radial velocities have been widely used to detect exoplanets, although the stellar signal significantly impacts the detection and characterisation performance, especially for low mass planets. On the other hand, RV time series are also very rich in information on stellar processes. In this lecture, I review the context of RV observations, describe how radial velocities are measured, and the properties of typical observations. I present the challenges represented by stellar activity for exoplanet studies, and describe the processes at play. Finally, I review the approaches which have been developed, including observations and simulations, as well as solar and stellar comparisons.
The radial velocity of the Sun as a star is affected by its surface convection and magnetic activity. The moments of the cross-correlation function between the solar spectrum and a binary line mask contain information about the stellar radial velocit y and line-profile distortions caused by stellar activity. As additional indicators, we consider the disc-averaged magnetic flux and the filling factor of the magnetic regions. Here we show that the activity-induced radial-velocity fluctuations are reduced when we apply a kernel regression to these activity indicators. The disc-averaged magnetic flux proves to be the best activity proxy over a timescale of one month and gives a standard deviation of the regression residuals of 1.04 m/s, more than a factor of 2.8 smaller than the standard deviation of the original radial velocity fluctuations. This result has been achieved thanks to the high-cadence and time continuity of the observations that simultaneously sample both the radial velocity and the activity proxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا