ﻻ يوجد ملخص باللغة العربية
In September 2016, the microquasar Cygnus X-3 underwent a giant radio flare, which was monitored for 6 days with the Medicina Radio Astronomical Station and the Sardinia Radio Telescope. Long observations were performed in order to follow the evolution of the flare on a hourly scale, covering six frequency ranges from 1.5 GHz to 25.6 GHz. The radio emission reached a maximum of 13.2 +/- 0.7 Jy at 7.2 GHz and 10 +/- 1 Jy at 18.6 GHz. Rapid flux variations were observed at high radio frequencies at the peak of the flare, together with rapid evolution of the spectral index: alpha steepened from 0.3 to 0.6 within 5 hours. This is the first time that such fast variations are observed, giving support to the evolution from optically thick to optically thin plasmons in expansion moving outward from the core. Based on the Italian network (Noto, Medicina and SRT) and extended to the European antennas (Torun, Yebes, Onsala), VLBI observations were triggered at 22 GHz on five different occasions, four times prior to the giant flare, and once during its decay phase. Flux variations of 2-hour duration were recorded during the first session. They correspond to a mini-flare that occurred close to the core ten days before the onset of the giant flare. From the latest VLBI observation we infer that four days after the flare peak the jet emission was extended over 30 mas.
The microquasar Cygnus X-3 underwent a giant radio flare in April 2017, reaching a maximum flux of $sim 16.5$ Jy at 8.5 GHz. We present results from a long monitoring campaign carried out with Medicina at 8.5, 18.6 and 24.1 GHz, in parallel to the Me
We report the results of the first two 5 GHz e-VLBI observations of the X-ray binary Cygnus X-3 using the European VLBI Network. Two successful observing sessions were held, on 2006 April 20, when the system was in a quasi-quiescent state several wee
With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 20
We report results from TeV gamma-ray observations of the microquasar Cygnus X-3. The observations were made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) over a time period from 2007 June 11 to 2011 November 28. VERITAS i
The radio galaxy 3C 84 is a representative of gamma-ray-bright misaligned active galactic nuclei (AGNs) and one of the best laboratories to study the radio properties of the sub-pc jet in connection with the gamma-ray emission. In order to identify p