ترغب بنشر مسار تعليمي؟ اضغط هنا

The Flash ADC system and PMT waveform reconstruction for the Daya Bay Experiment

50   0   0.0 ( 0 )
 نشر من قبل Zeyuan Yu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To better understand the energy response of the Antineutrino Detector (AD), the Daya Bay Reactor Neutrino Experiment installed a full Flash ADC readout system on one AD that allowed for simultaneous data taking with the current readout system. This paper presents the design, data acquisition, and simulation of the Flash ADC system, and focuses on the PMT waveform reconstruction algorithms. For liquid scintillator calorimetry, the most critical requirement to waveform reconstruction is linearity. Several common reconstruction methods were tested but the linearity performance was not satisfactory. A new method based on the deconvolution technique was developed with 1% residual non-linearity, which fulfills the requirement. The performance was validated with both data and Monte Carlo (MC) simulations, and 1% consistency between them has been achieved.

قيم البحث

اقرأ أيضاً

153 - J. Wilhelmi , R. Bopp , R. Brown 2014
We describe the design, installation, and operation of a purification system that is able to provide large volumes of high purity ASTM (D1193-91) Type-I water to a high energy physics experiment. The water environment is underground in a lightly seal ed system, and this provides significant challenges to maintaining high purity in the storage pools, each of which contains several thousand cubic meters. High purity is dictated by the need for large optical absorption length, which is critical for the operation of the experiment. The system is largely successful, and the water clarity criteria are met. We also include a discussion of lessons learned.
The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $bar{ u}_e$ oscillations over km-baselines. Subsequent data has provided the worlds most precise meas urement of $rm{sin}^22theta_{13}$ and the effective mass splitting $Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the worlds most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes (PMTs), the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.
The Daya Bay Reactor Neutrino Experiment has measured the last unknown neutrino mixing angle, {theta}13, to be non-zero at the 7.7{sigma} level. This is the most precise measurement to {theta}13 to date. To further enhance the understanding of the re sponse of the antineutrino detectors (ADs), a detailed calibration of an AD with the Manual Calibration System (MCS) was undertaken during the summer 2012 shutdown. The MCS is capable of placing a radioactive source with a positional accuracy of 25 mm in R direction, 20 mm in Z axis and 0.5{deg} in {Phi} direction. A detailed description of the MCS is presented followed by a summary of its performance in the AD calibration run.
92 - Wenqi Yan , Tao Hu , Li Zhou 2020
The Jiangmen Underground Neutrino Observatory (JUNO), a multi-purpose neutrino experiment, will use 20 kt liquid scintillator (LS). To achieve the physics goal of determining the neutrino mass ordering, 3$%$ energy resolution at 1 MeV is required. Th is puts strict requirements on the LS light yield and the transparency. Four LS purification steps have been designed and mid-scale plants have been built at Daya Bay. To examine the performance of the purified LS and find the optimized LS composition, the purified LS was injected to the antineutrino detector 1 in the experimental hall 1 (EH1-AD1) of the Daya Bay neutrino experiment. To pump out the original gadolinium loaded LS and fill the new LS, a LS replacement system has been built in EH1 in 2017. By replacing the Gd-LS with purified water, then replacing the water with purified LS, the replacement system successfully achieved the designed goal. Subsequently, the fluorescence and the wavelength shifter were added to higher concentrations via the replacement system. The data taken at various LS compositions helped JUNO determine the final LS cocktail. Details of the design, the construction, and the operation of the replacement system are reported in this paper.
81 - W. Q. Gu , G. F. Cao , X. H. Chen 2015
We present an evaluation of the background induced by $^{241}$Am-$^{13}$C neutron calibration sources in the Daya Bay reactor neutrino experiment. As a significant background for electron-antineutrino detection at 0.26$pm$0.12 per detector per day on average, it has been estimated by a Monte Carlo simulation that was benchmarked by a special calibration data set. This dedicated data set also provided the energy spectrum of the background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا