ﻻ يوجد ملخص باللغة العربية
This paper proposes a novel deep reinforcement learning (RL) architecture, called Value Prediction Network (VPN), which integrates model-free and model-based RL methods into a single neural network. In contrast to typical model-based RL methods, VPN learns a dynamics model whose abstract states are trained to make option-conditional predictions of future values (discounted sum of rewards) rather than of future observations. Our experimental results show that VPN has several advantages over both model-free and model-based baselines in a stochastic environment where careful planning is required but building an accurate observation-prediction model is difficult. Furthermore, VPN outperforms Deep Q-Network (DQN) on several Atari games even with short-lookahead planning, demonstrating its potential as a new way of learning a good state representation.
We introduce the value iteration network (VIN): a fully differentiable neural network with a `planning module embedded within. VINs can learn to plan, and are suitable for predicting outcomes that involve planning-based reasoning, such as policies fo
One of the main challenges in model-based reinforcement learning (RL) is to decide which aspects of the environment should be modeled. The value-equivalence (VE) principle proposes a simple answer to this question: a model should capture the aspects
As an economical and healthy mode of shared transportation, Bike Sharing System (BSS) develops quickly in many big cities. An accurate prediction method can help BSS schedule resources in advance to meet the demands of users, and definitely improve o
This paper proposes a new approach to a novel value network architecture for the game Go, called a multi-labelled (ML) value network. In the ML value network, different values (win rates) are trained simultaneously for different settings of komi, a c
Game-theoretic formulations of feature importance have become popular as a way to explain machine learning models. These methods define a cooperative game between the features of a model and distribute influence among these input elements using some