ﻻ يوجد ملخص باللغة العربية
We derive constraints on three-point functions involving the stress tensor, $T$, and a conserved $U(1)$ current, $j$, in 2+1 dimensional conformal field theories that violate parity, using conformal collider bounds introduced by Hofman and Maldacena. Conformal invariance allows parity-odd tensor-structures for the $langle T T T rangle$ and $ langle j j T rangle$ correlation functions which are unique to three space-time dimensions. Let the parameters which determine the $langle T T T rangle$ correlation function be $t_4$ and $alpha_T$ , where $alpha_T$ is the parity-violating contribution. Similarly let the parameters which determine $ langle j j T rangle$ correlation function be $a_2$, and $alpha_J$ , where $alpha_J$ is the parity-violating contribution. We show that the parameters $(t_4, alpha_T)$ and $(a_2, alpha_J)$ are bounded to lie inside a disc at the origin of the $t_4$ - $alpha_T$ plane and the $a_2$ - $alpha_J$ plane respectively. We then show that large $N$ Chern-Simons theories coupled to a fundamental fermion/boson lie on the circle which bounds these discs. The `t Hooft coupling determines the location of these theories on the boundary circles.
We study the crossing equations in $d=3$ for the four point function of two $U(1)$ currents and two scalars including the presence of a parity violating term for the $s$-channel stress tensor exchange. We show the existence of a new tower of double t
We study constraints coming from the modular invariance of the partition function of two-dimensional conformal field theories. We constrain the spectrum of CFTs in the presence of holomorphic and anti-holomorphic currents using the semi-definite prog
In this work we investigate the matrix elements of the energy-momentum tensor for massless on-shell states in four-dimensional unitary, local, and Poincare covariant quantum field theories. We demonstrate that these matrix elements can be parametrise
We study the properties of operators in a unitary conformal field theory whose scaling dimensions approach each other for some values of the parameters and satisfy von Neumann-Wigner non-crossing rule. We argue that the scaling dimensions of such ope
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points a