ﻻ يوجد ملخص باللغة العربية
We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zero neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.
We present here up-to-date neutrino mass limits exploiting the most recent cosmological data sets. By making use of the Cosmic Microwave Background temperature fluctuation and polarization measurements, Supernovae Ia luminosity distances, Baryon Acou
We explore the thermal light sterile neutrino situation from cosmological perspective in the $Lambda textrm{CDM} + r_{0.05} + N_{textrm{eff}} + m^{textrm{eff}}_{textrm{s}}$ model using combinations of latest data sets available. Here, $r_{0.05}$ is t
Astrophysical neutrinos travel long distances from their sources to the Earth traversing dark matter halos of clusters of galaxies and that of our own Milky Way. The interaction of neutrinos with dark matter may affect the flux of neutrinos. The rece
By utilizing large-scale graph analytic tools implemented in the modern Big Data platform, Apache Spark, we investigate the topological structure of gravitational clustering in five different universes produced by cosmological $N$-body simulations wi
We explore the effect of massive neutrinos on the weak lensing shear bispectrum using the Cosmological Massive Neutrino Simulations. We find that the primary effect of massive neutrinos is to suppress the amplitude of the bispectrum with limited effe