ﻻ يوجد ملخص باللغة العربية
In the present manuscript, we consider the problem of dispersive wave simulation on a rotating globally spherical geometry. In this Part IV, we focus on numerical aspects while the model derivation was described in Part III. The algorithm we propose is based on the splitting approach. Namely, equations are decomposed on a uniformly elliptic equation for the dispersive pressure component and a hyperbolic part of shallow water equations (on a sphere) with source terms. This algorithm is implemented as a two-step predictor-corrector scheme. On every step, we solve separately elliptic and hyperbolic problems. Then, the performance of this algorithm is illustrated on model idealised situations with an even bottom, where we estimate the influence of sphericity and rotation effects on dispersive wave propagation. The dispersive effects are quantified depending on the propagation distance over the sphere and on the linear extent of generation region. Finally, the numerical method is applied to a couple of real-world events. Namely, we undertake simulations of the Bulgarian 2007 and Chilean 2010 tsunamis. Whenever the data is available, our computational results are confronted with real measurements.
In this paper, we describe a numerical method to solve numerically the weakly dispersive fully nonlinear Serre-Green-Naghdi (SGN) celebrated model. Namely, our scheme is based on reliable finite volume methods, proven to be very effective for the hyp
The multiscale patch scheme is built from given small micro-scale simulations of complicated physical processes to empower large macro-scale simulations. By coupling small patches of simulations over unsimulated spatial gaps, large savings in computa
We present a parareal in time algorithm for the simulation of neutron diffusion transient model. The method is made efficient by means of a coarse solver defined with large time steps and steady control rods model. Using finite element for the space
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with
In the study of ocean wave impact on structures, one often uses Froude scaling since the dominant force is gravity. However the presence of trapped or entrained air in the water can significantly modify wave impacts. When air is entrained in water in