ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerically exploring the 1D-2D dimensional crossover on spin dynamics in the doped Hubbard model

91   0   0.0 ( 0 )
 نشر من قبل Yvonne Kung
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling $t_perp$. The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one to two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture known from one dimension. The DQMC calculations are complemented by cluster perturbation theory studies to form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact magnetic order.

قيم البحث

اقرأ أيضاً

We consider the repulsive Hubbard model in one dimension and show the different mechanisms present in the charge and spin separation phenomena for an electron, at half filling and bellow half filling. We also comment recent experimental results.
We study the Mott transition in a frustrated Hubbard model with next-nearest neighbor hopping at half-filling. The interplay between interaction, dimensionality and geometric frustration closes the one-dimensional Mott gap and gives rise to a metalli c phase with Fermi surface pockets. We argue that they emerge as a consequence of remnant one-dimensional Umklapp scattering at the momenta with vanishing interchain hopping matrix elements. In this pseudogap phase, enhanced d-wave pairing correlations are driven by antiferromagnetic fluctuations. Within the adopted cluster dynamical mean-field theory on the $8times 2$ cluster and down to our lowest temperatures the transition from one to two dimensions is continuous.
The $2d$ Hubbard model with nearest-neighbour hopping on the square lattice and an average of one electron per site is known to undergo an extended crossover from metallic to insulating behavior driven by proliferating antiferromagnetic correlations. We study signatures of this crossover in spin and charge correlation functions and present results obtained with controlled accuracy using diagrammatic Monte Carlo in the range of parameters amenable to experimental verification with ultracold atoms in optical lattices. The qualitative changes in charge and spin correlations associated with the crossover are observed at well-separated temperature scales, which encase the intermediary regime of non-Fermi-liquid character, where local magnetic moments are formed and non-local fluctuations in both channels are essential.
We study the spin diffusion and spin conductivity in the square lattice Hubbard model by using the finite-temperature Lanczos method. We show that the spin diffusion behaves differently from the charge diffusion and has a nonmonotonic $T$ dependence. This is due to a progressive liberation of charges that contribute to spin transport and enhance it beyond that active at low temperature due to the Heisenberg exchange. We further show that going away from half-filling and zero magnetization increases the spin diffusion, but that the increase is insufficient to reconcile the difference between the model calculations and the recent measurements on cold-atoms.
We investigate the dynamical spin and charge structure factors and the one-particle spectral function of the one-dimensional extended Hubbard model at half band-filling using the dynamical density-matrix renormalization group method. The influence of the model parameters on these frequency- and momentum-resolved dynamical correlation functions is discussed in detail for the Mott-insulating regime. We find quantitative agreement between our numerical results and experiments for the optical conductivity, resonant inelastic X-ray scattering, neutron scattering, and angle-resolved photoemission spectroscopy in the quasi-one-dimensional Mott insulator SrCuO$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا