ﻻ يوجد ملخص باللغة العربية
The $2d$ Hubbard model with nearest-neighbour hopping on the square lattice and an average of one electron per site is known to undergo an extended crossover from metallic to insulating behavior driven by proliferating antiferromagnetic correlations. We study signatures of this crossover in spin and charge correlation functions and present results obtained with controlled accuracy using diagrammatic Monte Carlo in the range of parameters amenable to experimental verification with ultracold atoms in optical lattices. The qualitative changes in charge and spin correlations associated with the crossover are observed at well-separated temperature scales, which encase the intermediary regime of non-Fermi-liquid character, where local magnetic moments are formed and non-local fluctuations in both channels are essential.
We study magnetic and charge susceptibilities in the half-filled two-dimensional triangular Hubbard model within the dual fermion approximation in the metallic, Mott insulating, and crossover regions of parameter space. In the textcolor{black}{insula
Two very different methods -- exact diagonalization on finite chains and a variational method -- are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculat
We use an unbiased, continuous-time quantum Monte Carlo method to address the possibility of a zero-temperature phase without charge-density-wave (CDW) order in the Holstein and, by extension, the Holstein-Hubbard model on the half-filled square latt
Using a self-consistent Hartree-Fock approximation we investigate the relative stability of various stripe phases in the extended $t$-$t$-$U$ Hubbard model. One finds that a negative ratio of next- to nearest-neighbor hopping $t/t<0$ expells holes fr
We study the phase diagram of the ionic Hubbard model (IHM) at half-filling using dynamical mean field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics o