ﻻ يوجد ملخص باللغة العربية
Gaussian Markov random fields are used in a large number of disciplines in machine vision and spatial statistics. The models take advantage of sparsity in matrices introduced through the Markov assumptions, and all operations in inference and prediction use sparse linear algebra operations that scale well with dimensionality. Yet, for very high-dimensional models, exact computation of predictive variances of linear combinations of variables is generally computationally prohibitive, and approximate methods (generally interpolation or conditional simulation) are typically used instead. A set of conditions are established under which the variances of linear combinations of random variables can be computed exactly using the Takahashi recursions. The ensuing computational simplification has wide applicability and may be used to enhance several software packages where model fitting is seated in a maximum-likelihood framework. The resulting algorithm is ideal for use in a variety of spatial statistical applications, including emph{LatticeKrig} modelling, statistical downscaling, and fixed rank kriging. It can compute hundreds of thousands exact predictive variances of linear combinations on a standard desktop with ease, even when large spatial GMRF models are used.
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisti
Many modern statistical applications involve inference for complicated stochastic models for which the likelihood function is difficult or even impossible to calculate, and hence conventional likelihood-based inferential echniques cannot be used. In
We consider Gaussian measures $mu, tilde{mu}$ on a separable Hilbert space, with fractional-order covariance operators $A^{-2beta}$ resp. $tilde{A}^{-2tilde{beta}}$, and derive necessary and sufficient conditions on $A, tilde{A}$ and $beta, tilde{bet
We provide a method for fast and exact simulation of Gaussian random fields on spheres having isotropic covariance functions. The method proposed is then extended to Gaussian random fields defined over spheres cross time and having covariance functio
Markov chain Monte Carlo is a widely-used technique for generating a dependent sequence of samples from complex distributions. Conventionally, these methods require a source of independent random variates. Most implementations use pseudo-random numbe