ترغب بنشر مسار تعليمي؟ اضغط هنا

Harnessing mass differential confinement effects in magnetized rotating plasmas to address new separation needs

46   0   0.0 ( 0 )
 نشر من قبل Renaud Gueroult
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to separate large volumes of mixed species based on atomic mass appears desirable for a variety of emerging applications with high societal impact. One possibility to meet this objective consists in leveraging mass differential effects in rotating plasmas. Beyond conventional centrifugation, rotating plasmas offer in principle additional ways to separate elements based on mass. Single ion orbits show that ion radial mass separation in a uniform magnetized plasma column can be achieved by applying a tailored electric potential profile across the column, or by driving a rotating magnetic field within the column. Furthermore, magnetic pressure and centrifugal effects can be combined in a non-uniform geometry to separate ions based on mass along the field lines. Practical application of these separation schemes hinges on the ability to produce the desirable electric and magnetic field configuration within the plasma column.



قيم البحث

اقرأ أيضاً

220 - F. Sattin , D.F. Escande 2013
A long standing puzzle in fusion research comes from experiments where a sudden peripheral electron temperature perturbation is accompanied by an almost simultaneous opposite change in central temperature, in a way incompatible with local transport m odels. This paper shows these experiments and similar ones are fairly well quantitatively reproduced, when induction effects are incorporated in the total plasma response, alongside standard local diffusive transport, as suggested in earlier work [V.D. Pustovitov, Plasma Phys. Control. Fusion {bf 54}, 124036 (2012)].
We analyze how the turbulent transport of $mathbf{E}times mathbf{B}$ type in magnetically confined plasmas is affected by intermittent features of turbulence. The latter are captured by the non-Gaussian distribution $P(phi)$ of the turbulent electric potential $phi$. Our analysis is performed at an analytical level and confirmed numerically using two statistical approaches. We have found that the diffusion is inhibited linearly by intermittency, mainly via the kurtosis of the distribution $P(phi)$. The associated susceptibility for this linear process is shown to be dependent on the poloidal velocity $V_p$ and on the correlation time $tau_c$ with a maxima at the time-of-flight $tau_{fl}$. Intermittency does not affect the Kubo number scaling in the strong regime.
The friction force on a test particle traveling through a plasma that is both strongly coupled and strongly magnetized is studied using molecular dynamics simulations. In addition to the usual stopping power component aligned antiparallel to the velo city, a transverse component that is perpendicular to both the velocity and Lorentz force is observed. This component, which was recently discovered in weakly coupled plasmas, is found to increase in both absolute and relative magnitude in the strongly coupled regime. Strong coupling is also observed to induce a third component of the friction force in the direction of the Lorentz force. These first-principles simulations reveal novel physics associated with collisions in strongly coupled, strongly magnetized, plasmas that are not predicted by existing kinetic theories. The effect is expected to influence macroscopic transport in a number of laboratory experiments and astrophysical plasmas.
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an ana lytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic Four-Ray Star pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].
A generalized Ohms law is derived to treat strongly magnetized plasmas in which the electron gyrofrequency significantly exceeds the electron plasma frequency. The frictional drag due to Coulomb collisions between electrons and ions is found to shift , producing an additional transverse resistivity term in the generalized Ohms law that is perpendicular to both the current ($vc{J}$) and the Hall ($vc{J} times vc{B}$) direction. In the limit of very strong magnetization, the parallel resistivity is found to increase by a factor of 3/2, and the perpendicular resistivity to scale as $ln (omega_{ce} tau_e)$, where $omega_{ce} tau_e$ is the Hall parameter. Correspondingly, the parallel conductivity coefficient is reduced by a factor of 2/3, and the perpendicular conductivity scales as $ln(omega_{ce} tau_e)/(omega_{ce} tau_e)^2$. These results suggest that strong magnetization significantly changes the magnetohydrodynamic evolution of a plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا