ﻻ يوجد ملخص باللغة العربية
This paper presents a sampling-based planning algorithm for in-hand manipulation of a grasped object using a series of external pushes. A high-level sampling-based planning framework, in tandem with a low-level inverse contact dynamics solver, effectively explores the space of continuous pushes with discrete pusher contact switch-overs. We model the frictional interaction between gripper, grasped object, and pusher, by discretizing complex surface/line contacts into arrays of hard frictional point contacts. The inverse dynamics problem of finding an instantaneous pusher motion that yields a desired instantaneous object motion takes the form of a mixed nonlinear complementarity problem. Building upon this dynamics solver, our planner generates a sequence of pushes that steers the object to a goal grasp. We evaluate the performance of the planner for the case of a parallel-jaw gripper manipulating different objects, both in simulation and with real experiments. Through these examples, we highlight the important properties of the planner: respecting and exploiting the hybrid dynamics of contact sticking/sliding/rolling and a sense of efficiency with respect to discrete contact switch-overs.
The discontinuities and multi-modality introduced by contacts make manipulation planning challenging. Many previous works avoid this problem by pre-designing a set of high-level motion primitives like grasping and pushing. However, such motion primit
This paper explores the problem of autonomous, in-hand regrasping--the problem of moving from an initial grasp on an object to a desired grasp using the dexterity of a robots fingers. We propose a planner for this problem which alternates between fin
The purpose of this benchmark is to evaluate the planning and control aspects of robotic in-hand manipulation systems. The goal is to assess the systems ability to change the pose of a hand-held object by either using the fingers, environment or a co
Attempts to achieve robotic Within-Hand-Manipulation (WIHM) generally utilize either high-DOF robotic hands with elaborate sensing apparatus or multi-arm robotic systems. In prior work we presented a simple robot hand with variable friction robot fin
In this paper, we present the mechanics and algorithms to compute the set of feasible motions of an object pushed in a plane. This set is known as the motion cone and was previously described for non-prehensile manipulation tasks in the horizontal pl