ﻻ يوجد ملخص باللغة العربية
We present the results from a series of ground-based radio observations toward a Planck Galactic Cold Clump (PGCC), PGCC G108.84-00.81, which is located in one curved filamentary cloud in the vicinity of an extended HII region Sh2-152 and SNR G109.1-1.0. PGCC G108.84-00.81 is mainly composed of two clumps, G108-N and G108-S. In the 850 micron dust continuum emission map, G108-N is shown as one component while G108-S is fragmented into four components. There is no infrared source associated with G108-N while there are two infrared sources (IRS 1 and IRS 2) associated with G108-S. The total mass of G108-N is larger than the jeans mass, suggesting that G108-N is gravitationally unstable and a potential place for a future star formation. The clump properties of G108-N and G108-S such as the gas temperature and the column density, are not distinctly different. However, G108-S is slightly more evolved than G108-N, in the consideration of the CO depletion factor, molecular abundances, and association with infrared sources. G108-S seems to be affected by the compression from Sh2-152, while G108-N is relatively protected from the external effect
Offsets of molecular line emission peaks from continuum peaks are very common but frequently difficult to explain with a single spherical cloud chemical model. We propose that the spatial projection effects of an irregular three dimensional (3D) clou
To deepen our understanding of the chemical properties of the Planck Galactic Cold Clump (PGCC) G168.72-15.48, we performed observations of nine molecular species, namely, ce{c-C3H}, ce{H2CO}, ce{HC5N}, ce{HC7N}, ce{SO}, ce{CCH}, ce{N2H+}, ce{CH3OH},
Gas at high Galactic latitude is a relatively little-noticed component of the interstellar medium. In an effort to address this, forty-one Planck Galactic Cold Clumps at high Galactic latitude (HGal; $|b|>25^{circ}$) were observed in $^{12}$CO, $^{13
We investigate the triggering of star formation in clouds that form in Galactic scale flows as the ISM passes through spiral shocks. We use the Lagrangian nature of SPH simulations to trace how the star forming gas is gathered into self-gravitating c
Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We ext