ترغب بنشر مسار تعليمي؟ اضغط هنا

Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm

74   0   0.0 ( 0 )
 نشر من قبل Shigeki Inoue
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multi-component systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analysis, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.

قيم البحث

اقرأ أيضاً

We study the gravitational instability and fragmentation of primordial protostellar discs by using high-resolution cosmological hydrodynamics simulations. We follow the formation and evolution of spiral arms in protostellar discs, examine the dynamic al stability, and identify a physical mechanism of secondary protostar formation. We use linear perturbation theory based on the spiral-arm instability (SAI) analysis in our previous studies. We improve the analysis by incorporating the effects of finite thickness and shearing motion of arms, and derive the physical conditions for SAI in protostellar discs. Our analysis predicts accurately the stability and the onset of arm fragmentation that is determined by the balance between self-gravity and gas pressure plus the Coriolis force. Formation of secondary and multiple protostars in the discs is explained by the SAI, which is driven by self-gravity and thus can operate without rapid gas cooling. We can also predict the typical mass of the fragments, which is found to be in good agreement with the actual masses of secondary protostars formed in the simulation.
Fragmentation of spiral arms can drive the formation of giant clumps and induce intense star formation in disc galaxies. Based on the spiral-arm instability analysis of our Paper I, we present linear perturbation theory of dynamical instability of se lf-gravitating spiral arms of magnetised gas, focusing on the effect of toroidal magnetic fields. Spiral arms can be destabilised by the toroidal fields which cancel Coriolis force, i.e. magneto-Jeans instability. Our analysis can be applied to multi-component systems that consist of gas and stars. To test our analysis, we perform ideal magneto-hydrodynamics simulations of isolated disc galaxies and examine the simulation results. We find that our analysis can characterise dynamical instability leading arms to fragment and form clumps if magnetic fields are nearly toroidal. We propose that dimensionless growth rate of the most unstable perturbation, which is computed from our analysis, can be used to predict fragmentation of spiral arms within an orbital time-scale. Our analysis is applicable as long as magnetic fields are nearly toroidal. Using our analytic model, we estimate a typical mass of clumps forming from spiral-arm fragmentation to be consistent with observed giant clumps $sim10^{7-8}~{rm M_odot}$. Furthermore, we find that, although the magnetic destabilisation can cause low-density spiral arms to fragment, the estimated mass of resultant clumps is almost independent from strength of magnetic fields since marginal instability occurs at long wavelengths which compensate the low densities of magnetically destabilised arms.
Aims: To gain insight into the expected gas dynamics at the interface of the Galactic bar and spiral arms in our own Milky Way galaxy, we examine as an extragalactic counterpart the evidence for multiple distinct velocity components in the cold, dens e molecular gas populating a comparable region at the end of the bar in the nearby galaxy NGC3627. Methods: We assemble a high resolution view of molecular gas kinematics traced by CO(2-1) emission and extract line-of-sight velocity profiles from regions of high and low gas velocity dispersion. Results: The high velocity dispersions arise with often double-peaked or multiple line-profiles. We compare the centroids of the different velocity components to expectations based on orbital dynamics in the presence of bar and spiral potential perturbations. A model of the region as the interface of two gas-populated orbits families supporting the bar and the independently rotating spiral arms provides an overall good match to the data. An extent of the bar to the corotation radius of the galaxy is favored. Conclusions: Using NGC3627 as an extragalactic example, we expect situations like this to favor strong star formation events such as observed in our own Milky Way since gas can pile up at the crossings between the orbit families. The relative motions of the material following these orbits is likely even more important for the build up of high density in the region. The surface densities in NGC3627 are also so high that shear at the bar end is unlikely to significantly weaken the star formation activity. We speculate that scenarios in which the bar and spiral rotate at two different pattern speeds may be the most favorable for intense star formation at such interfaces.
Interarm star formation contributes significantly to a galaxys star formation budget, and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct Halpha maps including detailed corrections for dust extinction and stellar absorption to identify 391 HII regions at 35pc resolution over 12 kpc^2. Using tracers sensitive to the underlying gravitational potential, we associate HII regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most HII region physical properties (luminosity, size, metallicity, ionization parameter) are independent of environment. We calculate the fraction of Halpha luminosity due to the diffuse ionized gas (DIG) background contaminating each HII region, and find the DIG surface brightness to be higher within HII regions compared to the surroundings, and slightly higher within arm HII regions. Use of the temperature sensitive [SII]/Halpha line ratio map instead of the Halpha surface brightness to identify HII region boundaries does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 x 10^9 yr) with no differences between the arm and interarm, however this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent HII region properties in both arm and interarm environments. This suggests either a difference in arm star formation and feedback, or a decoupling of dense star forming clumps from the more extended surrounding molecular gas.
In this paper we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6,222 SDSS spiral galaxies is selected. We use the machine visi on algorithm SpArcFiRe to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially ($4-6^mathrm{o}$) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-arm structures are looser (by 2$^mathrm{o}$) than those in two-arm galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا