ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating sympathetic cooling of atomic mixtures in nonlinear traps

143   0   0.0 ( 0 )
 نشر من قبل Roberto Onofrio
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the dynamics of sympathetic cooling of atomic mixtures in realistic, nonlinear trapping potentials using a microscopic effective model developed earlier for harmonic traps. We contrast the effectiveness of different atomic traps, such as Ioffe-Pritchard magnetic traps and optical dipole traps, and the role their intrinsic nonlinearity plays in speeding up or slowing down thermalization between the two atomic species. This discussion includes cases of configurations with lower effective dimensionality. From a more theoretical standpoint, our results provide the first exploration of a generalized Caldeira-Leggett model with nonlinearities both in the trapping potential as well as in the interspecies interactions, and no limitations on their coupling strength.



قيم البحث

اقرأ أيضاً

We investigate simultaneous state-insensitive trapping of a mixture of two different atomic species, Caesium and Rubidium. The magic wavelengths of the Caesium and Rubidium atoms are different, $935.6$ nm and $789.9$ nm respectively, thus single-freq uency simultaneous state-insensitive trapping is not possible. We thus identify bichromatic trapping as a viable approach to tune the two magic wavelengths to a common value. Correspondingly, we present several common magic wavelength combinations appropriate for simultaneous state-insensitive trapping of the two atomic species.
The fluctuations in thermodynamic and transport properties in many-body systems gain importance as the number of constituent particles is reduced. Ultracold atomic gases provide a clean setting for the study of mesoscopic systems; however, the detect ion of temporal fluctuations is hindered by the typically destructive detection, precluding repeated precise measurements on the same sample. Here, we overcome this hindrance by utilizing the enhanced light--matter coupling in an optical cavity to perform a minimally invasive continuous measurement and track the time evolution of the atom number in a quasi two-dimensional atomic gas during evaporation from a tilted trapping potential. We demonstrate sufficient measurement precision to detect atom number fluctuations well below the level set by Poissonian statistics. Furthermore, we characterize the non-linearity of the evaporation process and the inherent fluctuations of the transport of atoms out of the trapping volume through two-time correlations of the atom number. Our results establish coupled atom--cavity systems as a novel testbed for observing thermodynamics and transport phenomena in mesosopic cold atomic gases and, generally, pave the way for measuring multi-time correlation functions of ultracold quantum gases.
We present and derive analytic expressions for a fundamental limit to the sympathetic cooling of ions in radio-frequency traps using cold atoms. The limit arises from the work done by the trap electric field during a long-range ion-atom collision and applies even to cooling by a zero-temperature atomic gas in a perfectly compensated trap. We conclude that in current experimental implementations this collisional heating prevents access to the regimes of single-partial-wave atom-ion interaction or quantized ion motion. We determine conditions on the atom-ion mass ratio and on the trap parameters for reaching the s-wave collision regime and the trap ground state.
We show that nonlinear interactions induce both the Zeno and anti-Zeno effects in the generalised Bose-Josephson model (with the on-site interactions and the second-order tunneling) describing Bose-Einstein condensate in double-well trap subject to p article removal from one of the wells. We find that the on-site interactions induce textit{only} the Zeno effect, which appears at long evolution times, whereas the second-order tunneling leads to a strong decay of the atomic population at short evolution times, reminiscent of the anti-Zeno effect, and destroys the nonlinear Zeno effect due to the on-site interactions at long times.
Motivated by the experimental development of quasi-homogeneous Bose-Einstein condensates confined in box-like traps, we study numerically the dynamics of dark solitons in such traps at zero temperature. We consider the cases where the side walls of t he box potential rise either as a power-law or a Gaussian. While the soliton propagates through the homogeneous interior of the box without dissipation, it typically dissipates energy during a reflection from a wall through the emission of sound waves, causing a slight increase in the solitons speed. We characterise this energy loss as a function of the wall parameters. Moreover, over multiple oscillations and reflections in the box-like trap, the energy loss and speed increase of the soliton can be significant, although the decay eventually becomes stabilized when the soliton equilibrates with the ambient sound field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا