ﻻ يوجد ملخص باللغة العربية
Transient beam loading effect is one of the key issues in any superconducting accelerators, which needs to be carefully investigated. The core problem in the analysis is to obtain the time evolution of cavity voltage under the transient beam loading. To simplify the problem, the second order ordinary differential equation describing the behavior of the cavity voltage is intuitively simplified to a first order one, with the aid of the two critical approximations lacking the proof for their validity. In this paper, the validity is examined mathematically in some specific cases, resulting in a criterion for the simplification. Its popular to solve the approximated equation for the cavity voltage numerically, while this paper shows that it can also be solved analytically under the step function approximation for the driven term. With the analytical solution to the cavity voltage, the transient reflected power from the cavity and the energy gain of the central particle in the bunch can also be calculated analytically. The validity of the step function approximation for the driven term is examined by direct evaluations. After that, the analytical results are compared with the numerical ones.
Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the Accelerator Driven Sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sci
The fast beam-ion instability (FII) is caused by the interaction of an electron bunch train with the residual gas ions. The ion oscillations in the potential well of the electron beam have an inherent frequency spread due to the nonlinear profile of
We report on the experience with long-range beam--beam effects in the LHC, in dedicated studies as well as the experience from operation. Where possible, we compare the observations with the expectations.
During the proton-anti proton collider run several experiments were carried out in order to understand the effect of the beam-beam interaction on backgrounds and lifetimes. In this talk a selection of these experiments will be presented. From these e
We first introduce the design parameters of the Beijing Electron-Positron Collider II (BEPCII) and the simulation study of beam-beam effects during the design process of the machine. The main advances since 2007 are briefly introduced and reviewed. T