ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam-Beam Effects in the SPS Proton-Anti Proton Collider

143   0   0.0 ( 0 )
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. Cornelis




اسأل ChatGPT حول البحث

During the proton-anti proton collider run several experiments were carried out in order to understand the effect of the beam-beam interaction on backgrounds and lifetimes. In this talk a selection of these experiments will be presented. From these experiments, the importance of relative beam sizes and tune ripple could be demonstrated.



قيم البحث

اقرأ أيضاً

A system for online measurement of the transverse beam emittance was developed. It is named $^{4}$PrOB$varepsilon$aM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multi ple beam profiler method. The core of the system is constituted by four consecutive UniBEaM profilers, which are based on silica fibers passing across the beam. The $^{4}$PrOB$varepsilon$aM system was deployed for characterization studies of the 18~MeV proton beam produced by the IBA Cyclone 18 MeV cyclotron at Bern University Hospital (Inselspital). The machine serves daily radioisotope production and multi-disciplinary research, which is carried out with a specifically conceived Beam Transport Line (BTL). The transverse RMS beam emittance of the cyclotron was measured as a function of several machine parameters, such as the magnetic field, RF peak voltage, and azimuthal angle of the stripper. The beam emittance was also measured using the method based on the quadrupole strength variation. The results obtained with both techniques were compared and a good agreement was found. In order to characterize the longitudinal dynamics, the proton energy distribution was measured. For this purpose, a method was developed based on aluminum absorbers of different thicknesses, a UniBEaM detector, and a Faraday cup. The results were an input for a simulation of the BTL developed in the MAD-X software. This tool allows machine parameters to be tuned online and the beam characteristics to be optimized for specific applications.
123 - Y. Zhang 2014
We first introduce the design parameters of the Beijing Electron-Positron Collider II (BEPCII) and the simulation study of beam-beam effects during the design process of the machine. The main advances since 2007 are briefly introduced and reviewed. T he longitudinal feedback system was installed to suppress the coupled bunch instability in January 2010. The horizontal tune decreased from 6.53 to 6.508 during the course of data taken in December, 2010. The saturation of the beam-beam parameter was found in 2011, and the vacuum chambers and magnets near the north crossing point were moved 15 cm in order to mitigate the long range beam-beam interaction. At the beginning of 2013, the beam-beam parameter achieved 0.04 with the new lower $alpha_{p}$ lattice and the peak luminosity achieved 7 x 10$^{32}$ cm$^{-2}$ s$^{-1}$.
The Fermilab Booster is being upgraded under the Proton Improvement Plan (PIP) to be capable of providing a proton flux of $2.25^{17}$ protons per hour. The intensity per cycle will remain at the present operational $4.3^{12}$ protons per pulse, howe ver the Booster beam cycle rate is going to be increased from 7.5 Hz to 15 Hz. One of the biggest challenges is to maintain the present beam loss power while the doubling the beam flux. Under PIP, there has been a large effort in beam studies and simulations to better understand the mechanisms of the beam loss. The goal is to reduce it by half by correcting and controlling the beam dynamics and by improving operational systems through hardware upgrades. This paper is going to present the recent beam study results and status of the Booster operations.
We illustrate the use of the invariant spin field for describing permissible equilibrium spin distributions in high energy spin polarised proton beams.}
68 - A.A. Gorn , M. Turner , E. Adli 2020
In 2017, AWAKE demonstrated the seeded self-modulation (SSM) of a 400 GeV proton beam from the Super Proton Synchrotron (SPS) at CERN. The angular distribution of the protons deflected due to SSM is a quantitative measure of the process, which agrees with simulations by the two-dimensional (axisymmetric) particle-in-cell code LCODE. Agreement is achieved for beam populations between $10^{11}$ and $3 times 10^{11}$ particles, various plasma density gradients ($-20 div 20%$) and two plasma densities ($2times 10^{14} text{cm}^{-3}$ and $7 times 10^{14} text{cm}^{-3}$). The agreement is reached only in the case of a wide enough simulation box (at least five plasma wavelengths).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا