ﻻ يوجد ملخص باللغة العربية
We study anisotropies of helicity modulus, excitation spectrum, sound velocity and angle-resolved luminescence spectrum in a two-dimensional system of interacting excitons in a periodic potential. Analytical expressions for anisotropic corrections to the quantities characterizing superfluidity are obtained. We consider particularly the case of dipolar excitons in quantum wells. For GaAs/AlGaAs heterostructures as well as MoS$_2$/hBN/MoS$_2$ and MoSe$_2$/hBN/WSe$_2$ transition metal dichalcogenide bilayers estimates of the magnitude of the predicted effects are given. We also present a method to control superfluid motion and to determine the helicity modulus in generic dipolar systems.
We investigate the properties of a two-dimensional quasicrystal in the presence of a uniform magnetic field. In this configuration, the density of states (DOS) displays a Hofstadter butterfly-like structure when it is represented as a function of the
Superfluid exciton density and superfluid transition (crossover) temperature are calculated for 2D excitons in large-size flat and harmonic traps. A generalized local density approximation for the Kosterlitz-Thouless theory is developed.
Correlations of luminescence intensity have been studied under Bose-Einstein condensation of dipolar excitons in the temperature range of 0.45-4.2 K. Photoexcited dipolar excitons were collected in a lateral trap in GaAs/AlGaAs Schottky-diode heteros
We propose a robust and efficient way of controlling the optical spectra of two-dimensional materials and van der Waals heterostructures by quantum cavity embedding. The cavity light-matter coupling leads to the formation of exciton-polaritons, a sup
We report on results of Quantum Monte Carlo simulations for bosons in a two dimensional quasi-periodic optical lattice. We study the ground state phase diagram at unity filling and confirm the existence of three phases: superfluid, Mott insulator, an