ﻻ يوجد ملخص باللغة العربية
Multiparticle interference is a fundamental phenomenon in the study of quantum mechanics.It was discovered in a recent experiment [Ra, Y.-S. et al, Proc. Natl Acad. Sci. USA textbf{110}, 1227(2013)] that spectrally uncorrelated biphotons exhibited a nonmonotonic quantum-to-classical transition in a four-photon Hong-Ou-Mandel (HOM) interference. In this work, we consider the same scheme with spectrally correlated photons.By theoretical calculation and numerical simulation, we found the transition not only can be nonmonotonic with negative-correlated or uncorrelated biphotons, but also can be monotonic with positive-correlated biphotons. The fundamental reason for this difference is that the HOM-type multi-photon interference is a differential-frequency interference. Our study may shed new light on understanding the role of frequency entanglement in multi-photon behavior.
We experimentally demonstrate the non-monotonic dependence of genuine many-particle interference signals on the particles mutual distinguishability. Our theoretical analysis shows that such non-monotonicity is a generic feature of the quantum to clas
The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition i
We study the dynamical complexity of an open quantum driven double-well oscillator, mapping its dependence on effective Plancks constant $hbar_{eff}equivbeta$ and coupling to the environment, $Gamma$. We study this using stochastic Schrodinger equati
We study how decoherence rules the quantum-classical transition of the Kicked Harmonic Oscillator (KHO). When the amplitude of the kick is changed the system presents a classical dynamics that range from regular to a strong chaotic behavior. We show
Our knowledge of quantum mechanics can satisfactorily describe simple, microscopic systems, but is yet to explain the macroscopic everyday phenomena we observe. Here we aim to shed some light on the quantum-to-classical transition as seen through the