ﻻ يوجد ملخص باللغة العربية
We study the dynamical complexity of an open quantum driven double-well oscillator, mapping its dependence on effective Plancks constant $hbar_{eff}equivbeta$ and coupling to the environment, $Gamma$. We study this using stochastic Schrodinger equations, semiclassical equations, and the classical limit equation. We show that (i) the dynamical complexity initially increases with effective Hilbert space size (as $beta$ decreases) such that the most quantum systems are the least dynamically complex. (ii) If the classical limit is chaotic, that is the most dynamically complex (iii) if the classical limit is regular, there is always a quantum system more dynamically complex than the classical system. There are several parameter regimes where the quantum system is chaotic even though the classical limit is not. While some of the quantum chaotic attractors are of the same family as the classical limiting attractors, we also find a quantum attractor with no classical counterpart. These phenomena occur in experimentally accessible regimes.
We study the quantum to classical transition in a chaotic system surrounded by a diffusive environment. The emergence of classicality is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the
We study how decoherence rules the quantum-classical transition of the Kicked Harmonic Oscillator (KHO). When the amplitude of the kick is changed the system presents a classical dynamics that range from regular to a strong chaotic behavior. We show
The work distribution is a fundamental quantity in nonequilibrium thermodynamics mainly due to its connection with fluctuations theorems. Here we develop a semiclassical approximation to the work distribution for a quench process in chaotic systems.
We construct a quantum oracle relative to which $mathsf{BQP} = mathsf{QMA}$ but cryptographic pseudorandom quantum states and pseudorandom unitary transformations exist, a counterintuitive result in light of the fact that pseudorandom states can be b
The quantum-classical limits for quantum tomograms are studied and compared with the corresponding classical tomograms, using two different definitions for the limit. One is the Planck limit where $hbar to 0$ in all $hbar $-dependent physical observa