ترغب بنشر مسار تعليمي؟ اضغط هنا

Solid-state electron spin lifetime limited by phononic vacuum modes

98   0   0.0 ( 0 )
 نشر من قبل Andreas Angerer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Longitudinal relaxation is the process by which an excited spin ensemble decays into its thermal equilibrium with the environment. In solid-state spin systems relaxation into the phonon bath usually dominates over the coupling to the electromagnetic vacuum. In the quantum limit the spin lifetime is determined by phononic vacuum fluctuations. However, this limit was not observed in previous studies due to thermal phonon contributions or phonon-bottleneck processes. Here we use a dispersive detection scheme based on cavity quantum electrodynamics (cQED) to observe this quantum limit of spin relaxation of the negatively charged nitrogen vacancy ($mathrm{NV}^-$) centre in diamond. Diamond possesses high thermal conductivity even at low temperatures, which eliminates phonon-bottleneck processes. We observe exceptionally long longitudinal relaxation times $T_1$ of up to 8h. To understand the fundamental mechanism of spin-phonon coupling in this system we develop a theoretical model and calculate the relaxation time ab initio. The calculations confirm that the low phononic density of states at the $mathrm{NV}^-$ transition frequency enables the spin polarization to survive over macroscopic timescales.

قيم البحث

اقرأ أيضاً

We present measurements at millikelvin temperatures of the microwave-frequency acoustic properties of a crystalline silicon nanobeam cavity incorporating a phononic bandgap clamping structure for acoustic confinement. Utilizing pulsed laser light to excite a co-localized optical mode of the nanobeam cavity, we measure the dynamics of cavity acoustic modes with single-phonon sensitivity. Energy ringdown measurements for the fundamental $5$~GHz acoustic mode of the cavity shows an exponential increase in phonon lifetime versus number of periods in the phononic bandgap shield, increasing up to $tau approx 1.5$~seconds. This ultralong lifetime, corresponding to an effective phonon propagation length of several kilometers, is found to be consistent with damping from non-resonant two-level system defects on the surface of the silicon device. Potential applications of these ultra-coherent nanoscale mechanical resonators range from tests of various collapse models of quantum mechanics to miniature quantum memory elements in hybrid superconducting quantum circuits.
The development of spin qubits for quantum technologies requires their protection from the main source of finite-temperature decoherence: atomic vibrations. Here we eliminate one of the main barriers to the progress in this field by providing a compl ete first-principles picture of spin relaxation that includes up to two-phonon processes. Our method is based on machine learning and electronic structure theory and makes the prediction of spin lifetime in realistic systems feasible. We study a prototypical vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes due to a small number of THz intra-molecular vibrations. These findings effectively change the conventional understanding of spin relaxation in this class of materials and open new avenues for the rational design of long-living spin systems.
255 - H. Duprez , E. Sivre , A. Anthore 2019
The quantum coherence of electronic quasiparticles underpins many of the emerging transport properties of conductors at small scales. Novel electronic implementations of quantum optics devices are now available with perspectives such as flying qubit manipulations. However, electronic quantum interferences in conductors remained up to now limited to propagation paths shorter than $30,mu$m, independently of the material. Here we demonstrate strong electronic quantum interferences after a propagation along two $0.1,$mm long pathways in a circuit. Interferences of visibility as high as $80%$ and $40%$ are observed on electronic analogues of the Mach-Zehnder interferometer of, respectively, $24,mu$m and $0.1,$mm arm length, consistently corresponding to a $0.25,$mm electronic phase coherence length. While such devices perform best in the integer quantum Hall regime at filling factor 2, the electronic interferences are restricted by the Coulomb interaction between copropagating edge channels. We overcome this limitation by closing the inner channel in micron-scale loops of frozen internal degrees of freedom, combined with a loop-closing strategy providing an essential isolation from the environment.
In coherent control, electromagnetic vacuum fluctuations usually cause coherence loss through irreversible spontaneous emission. However, since the dissipation via emission is essentially due to correlation of the fluctuations, when emission ends in a superposition of multiple final states, correlation between different pathways may build up if the which-way information is not fully resolved (i.e., the emission spectrum is broader than the transition energy range). Such correlation can be exploited for spin-flip control in a $Lambda$-type three-level system, which manifests itself as an all-optical spin echo in nonlinear optics with two orders of optical fields saved as compared with stimulated Raman processes. This finding represents a new class of optical nonlinearity induced by electromagnetic vacuum fluctuations.
We use multi-pulse dynamical decoupling to increase the coherence lifetime (T2) of large numbers of nitrogen-vacancy (NV) electronic spins in room temperature diamond, thus enabling scalable applications of multi-spin quantum information processing a nd metrology. We realize an order-of-magnitude extension of the NV multi-spin T2 for diamond samples with widely differing spin environments. For samples with nitrogen impurity concentration <~1 ppm, we find T2 > 2 ms, comparable to the longest coherence time reported for single NV centers, and demonstrate a ten-fold enhancement in NV multi-spin sensing of AC magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا