ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable topological spin wave beamsplitters and interferometers

63   0   0.0 ( 0 )
 نشر من قبل Xiansi Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventional magnonic devices use three classes of magnetostatic waves that require detailed manipulation of magnetization structure that makes the design and the device/circuitry scalability difficult tasks. Here, we demonstrate that devices based on topological exchange spin waves do not suffer from the problem with additional nice features of nano-scale wavelength and high frequency. Two results are reported. 1) A perpendicular ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as spin-orbit induced nearest-neighbor pseudodipolar interaction (and/or next-nearest neighbor Dzyaloshinskii-Moriya interaction) is present. 2) As a proof of concept, spin wave beamsplitters and spin wave interferometers are designed by using domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current/fields, one can essentially draw, erase and redraw different spin wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. Devices made from magnetic topological materials are robust against both internal and external perturbations such as the spin wave frequency variation and device geometry as well as defects.

قيم البحث

اقرأ أيضاً

We show that topological transitions in electronic spin transport are feasible by a controlled manipulation of spin-guiding fields. The transitions are determined by the topology of the fields texture through an effective Berry phase (related to the winding parity of spin modes around poles in the Bloch sphere), irrespective of the actual complexity of the nonadiabatic spin dynamics. This manifests as a distinct dislocation of the interference pattern in the quantum conductance of mesoscopic loops. The phenomenon is robust against disorder, and can be experimentally exploited to determine the magnitude of inner spin-orbit fields.
Artificial spin ices are ensembles of geometrically-arranged, interacting nanomagnets which have shown promising potential for the realization of reconfigurable magnonic crystals. Such systems allow for the manipulation of spin waves on the nanoscale and their potential use as information carriers. However, there are presently two general obstacles to the realization of artificial spin ice-based magnonic crystals: the magnetic state of artificial spin ices is difficult to reconfigure and the magnetostatic interactions between the nanoislands are often weak, preventing mode coupling. We demonstrate, using micromagnetic modeling, that coupling a reconfigurable artificial spin ice geometry made of weakly interacting nanomagnets to a soft magnetic underlayer creates a complex system exhibiting dynamically coupled modes. These give rise to spin wave channels in the underlayer at well-defined frequencies, based on the artificial spin ice magnetic state, which can be reconfigured. These findings open the door to the realization of reconfigurable magnonic crystals with potential applications for data transport and processing in magnonic-based logic architectures.
Artificial square spin ices are structures composed of magnetic elements arranged on a geometrically frustrated lattice and located on the sites of a two-dimensional square lattice, such that there are four interacting magnetic elements at each verte x. Using a semi-analytical approach, we show that square spin ices exhibit a rich spin wave band structure that is tunable both by external magnetic fields and the configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors. Full-scale micromagnetic simulations corroborate our semi-analytical approach. Our results show that artificial square spin ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.
Strongly-interacting artificial spin systems are moving beyond mimicking naturally-occuring materials to find roles as versatile functional platforms, from reconfigurable magnonics to designer magnetic metamaterials. Typically artificial spin systems comprise nanomagnets with a single magnetisation texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we achieve macrospin/vortex bistability and demonstrate a four-state metamaterial spin-system Artificial Spin-Vortex Ice (ASVI). ASVI is capable of adopting Ising-like macrospins with strong ice-like vertex interactions, in addition to weakly-coupled vortices with low stray dipolar-field. The enhanced bi-texture microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex training and history-dependent nonlinear training dynamics. We observe vortex-domain formation alongside MFM tip vortex-writing. Tip-written vortices dramatically alter local reversal and memory dynamics. Vortices and macrospins exhibit starkly-differing spin-wave spectra with analogue-style mode-amplitude control via vortex training and mode-frequency shifts of df = 3.8 GHz. We leverage spin-wave spectral fingerprinting for rapid, scaleable readout of vortex and macrospin populations over complex training-protocols with applicability for functional magnonics and physical memory.
In this work, we study experimentally by broadband ferromagnetic resonance measurements, the dependence of the spin-wave excitation spectra on the magnetic applied field in CoFeB meander-shaped films. Two different orientations of the external magnet ic field were explored, namely parallel or perpendicular to the lattice cores. The interpretation of the field dependence of the frequency and spatial profiles of major spin-wave modes were obtained by micromagnetic simulations. We show that the vertical segments lead to the easy-axis type of magnetic anisotropy and support the in-phase and out-of-phase spin-wave precession amplitude in the vertical segments. The latter could potentially be used for the design of tunable metasurfaces or in magnetic memories based on meandering 3D magnetic films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا