ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological transitions in spin interferometers

59   0   0.0 ( 0 )
 نشر من قبل Henri Saarikoski
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that topological transitions in electronic spin transport are feasible by a controlled manipulation of spin-guiding fields. The transitions are determined by the topology of the fields texture through an effective Berry phase (related to the winding parity of spin modes around poles in the Bloch sphere), irrespective of the actual complexity of the nonadiabatic spin dynamics. This manifests as a distinct dislocation of the interference pattern in the quantum conductance of mesoscopic loops. The phenomenon is robust against disorder, and can be experimentally exploited to determine the magnitude of inner spin-orbit fields.

قيم البحث

اقرأ أيضاً

Conventional magnonic devices use three classes of magnetostatic waves that require detailed manipulation of magnetization structure that makes the design and the device/circuitry scalability difficult tasks. Here, we demonstrate that devices based o n topological exchange spin waves do not suffer from the problem with additional nice features of nano-scale wavelength and high frequency. Two results are reported. 1) A perpendicular ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as spin-orbit induced nearest-neighbor pseudodipolar interaction (and/or next-nearest neighbor Dzyaloshinskii-Moriya interaction) is present. 2) As a proof of concept, spin wave beamsplitters and spin wave interferometers are designed by using domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current/fields, one can essentially draw, erase and redraw different spin wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. Devices made from magnetic topological materials are robust against both internal and external perturbations such as the spin wave frequency variation and device geometry as well as defects.
We identify a series of topological transitions occurring in electronic spin transport when manipulating spin-guiding fields controlled by the geometric shape of mesoscopic interferometers. They manifest as distinct
The interplay between non-Hermiticity and topology opens an exciting avenue for engineering novel topological matter with unprecedented properties. While previous studies have mainly focused on one-dimensional systems or Chern insulators, here we inv estigate topological phase transitions to/from quantum spin Hall (QSH) insulators driven by non-Hermiticity. We show that a trivial to QSH insulator phase transition can be induced by solely varying non-Hermitian terms, and there exists exceptional edge arcs in QSH phases. We establish two topological invariants for characterizing the non-Hermitian phase transitions: i) with time-reversal symmetry, the biorthogonal $mathbb{Z}_2$ invariant based on non-Hermitian Wilson loops, and ii) without time-reversal symmetry, a biorthogonal spin Chern number through biorthogonal decompositions of the Bloch bundle of the occupied bands. These topological invariants can be applied to a wide class of non-Hermitian topological phases beyond Chern classes, and provides a powerful tool for exploring novel non-Hermitian topological matter and their device applications.
We develop the high frequency expansion based on the Brillouin-Wigner (B-W) perturbation theory for driven systems with spin-orbit coupling which is applicable to the cases of silicene, germanene and stanene. We compute the effective Hamiltonian in t he zero photon subspace not only to order $O(omega^{-1})$, but by keeping all the important terms to order $O(omega^{-2})$, and obtain the photo-assisted correction terms to both the hopping and the spin-orbit terms, as well as new longer ranged hopping terms. We then use the effective static Hamiltonian to compute the phase diagram in the high frequency limit and compare it with the results of direct numerical computation of the Chern numbers of the Floquet bands, and show that at sufficiently large frequencies, the B-W theory high frequency expansion works well even in the presence of spin-orbit coupling terms.
70 - N. Sedlmayr 2019
The traditional concept of phase transitions has, in recent years, been widened in a number of interesting ways. The concept of a topological phase transition separating phases with a different ground state topology, rather than phases of different s ymmetries, has become a large widely studied field in its own right. Additionally an analogy between phase transitions, described by non-analyticities in the derivatives of the free energy, and non-analyticities which occur in dynamically evolving correlation functions has been drawn. These are called dynamical phase transitions and one is often now far from the equilibrium situation. In these short lecture notes we will give a brief overview of the history of these concepts, focusing in particular on the way in which dynamical phase transitions themselves can be used to shed light on topological phase transitions and topological phases. We will go on to focus, first, on the effect which the topologically protected edge states, which are one of the interesting consequences of topological phases, have on dynamical phase transitions. Second we will consider what happens in the experimentally relevant situations where the system begins either in a thermal state rather than the ground state, or exchanges particles with an external environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا