ﻻ يوجد ملخص باللغة العربية
We discuss the physics case for and the concept of a medium-scale axion helioscope with sensitivities in the axion-photon coupling a few times better than CERN Axion Solar Telescope (CAST). Search for an axion-like particle with these couplings is motivated by several persistent astrophysical anomalies. We present early conceptual design, existing infrastructure, projected sensitivity and timeline of such a helioscope (Troitsk Axion Solar Telescope Experiment, TASTE) to be constructed in the Institute for Nuclear Research, Troitsk, Russia. The proposed instrument may be also used for the search of dark-matter halo axions.
We study the feasibility of a new generation axion helioscope, the most ambitious and promising detector of solar axions to date. We show that large improvements in magnetic field volume, x-ray focusing optics and detector backgrounds are possible be
The axion is an intriguing dark matter candidate emerging from the Peccei-Quinn solution to the strong CP problem. Current experimental searches for axion dark matter focus on the axion mass range below 40 $mu$eV. However, if the Peccei-Quinn symmetr
A new search result of the Tokyo axion helioscope is presented. The axion helioscope consists of a dedicated cryogen-free 4T superconducting magnet with an effective length of 2.3 m and PIN photodiodes as x-ray detectors. Solar axions, if exist, woul
A preliminary result of the solar axion search experiment at the University of Tokyo is presented. We searched for axions which could be produced in the solar core by exploiting the axion helioscope. The helioscope consists of a superconducting magne
We generalize the recently proposed $mathcal{PT}$-symmetric axion haloscope to a larger array with more $mathcal{PT}$-symmetric structures. The optimized signal-to-noise ratio (SNR) has a greater enhancement, as well as the signal power. Furthermore,