ﻻ يوجد ملخص باللغة العربية
Using a nonequilibrium implementation of the Lanczos-based exact diagonalisation technique we study the possibility of the light-induced superconducting phase coherence in a solid state system after an ultrafast optical excitation. In particular, we investigate the buildup of superconducting correlations by calculating an exact time-dependent wave function reflecting the properties of the system in non-equilibrium and the corresponding transient response functions. Within our picture we identify a possible transient Meissner effect after dynamical quenching of the non-superconducting wavefunction and extract a characteristic superfluid density that we compare to experimental data. Finally, we find that the stability of the induced superconducting state depends crucially on the nature of the excitation quench: namely, a pure interaction quench induces a long-lived superconducting state, whereas a phase quench leads to a short-lived transient superconductor.
We present the results of numerical studies of superconductivity and antiferromagnetism in a strongly correlated electron system. To do this we construct a Hubbard model on a lattice of self-consistently embedded multi-site clusters by means of a dyn
We use a Luttinger-Ward functional approach to study the problem of phonon-mediated superconductivity in electron systems with strong electron-electron interactions (EEIs). Our derivation does not rely on an expansion in skeleton diagrams for the EEI
We use femtosecond optical spectroscopy to systematically measure the primary energy relaxation rate k1 of photoexcited carriers in cuprate and pnictide superconductors. We find that k1 increases monotonically with increased negative strain in the cr
We present a novel route for attaining unconventional superconductivity (SC) in a strongly correlated system without doping. In a simple model of a correlated band insulator (BI) at half-filling we demonstrate, based on a generalization of the projec
We solve by Dynamical Mean Field Theory a toy-model which has a phase diagram strikingly similar to that of high $T_c$ superconductors: a bell-shaped superconducting region adjacent the Mott insulator and a normal phase that evolves from a convention