ﻻ يوجد ملخص باللغة العربية
We use the concept of two-particle probability amplitude to derive the stochastic evolution equation for two-particle four-point correlations in tight-binding networks affected by diagonal dynamic disorder. It is predicted that in the presence of dynamic disorder, the average spatial wave function of indistinguishable particle pairs delocalizes and populates all network sites including those which are weakly coupled in the absence of disorder. Interestingly, our findings reveal that correlation elements accounting for particle indistinguishability are immune to the impact of dynamic disorder.
Quantum walks in dynamically-disordered networks have become an invaluable tool for understanding the physics of open quantum systems. In this work, we introduce a novel approach to describe the dynamics of indistinguishable particles in noisy quantu
We consider atomistic geometry relaxation in the context of linear tight binding models for point defects. A limiting model as Fermi-temperature is sent to zero is formulated, and an exponential rate of convergence for the nuclei configuration is est
Experiments on hexagonal graphene-like structures using microwave measuring techniques are presented. The lowest transverse-electric resonance of coupled dielectric disks sandwiched between two metallic plates establishes a tight-binding configuratio
We present a one-dimensional tight-binding chain of two-level systems coupled only through common dissipative Markovian reservoirs. This quantum chain can demonstrate anomalous thermodynamic behavior contradicting Fourier law. Population dynamics of
We generalize solid-state tight-binding techniques for the spectral analysis of large superconducting circuits. We find that tight-binding states can be better suited for approximating the low-energy excitations than charge-basis states, as illustrat