ﻻ يوجد ملخص باللغة العربية
The intermetallic compound PFA that possesses a three-dimensional network structure of Al polyhedra centered at the transition metal element Fe and the rare earth Pr is investigated through neutron powder diffraction and inelastic neutron scattering in order to elucidate the magnetic ground state of Pr and Fe and the crystal field effects of Pr. Our neutron diffraction study confirms long-range magnetic order of Pr below $T_N $ = 4.5~K in this compound. Subsequent magnetic structure estimation reveals a magnetic propagation vector $k$ = ($frac{1}{2}$~0~$frac{1}{2}$) with a magnetic moment value of 2.5~$mu_mathrm{B}$/Pr along the orthorhombic $c$-axis and evidence the lack of ordering in the Fe sublattice. The inelastic neutron scattering study reveals one crystalline electric field excitation near 19~meV at 5~K in PFA. The energy-integrated intensity of the 19~meV excitation as a function of |$Q$| $(A^{-1})$ follows the square of the magnetic form factor of Pr$^{3+}$ thereby confirming that the inelastic excitation belongs to the Pr sublattice. The second sum rule applied to the dynamic structure factor indicates only 1.6(2)~$mu_mathrm{B}$ evolving at the 19~meV peak compared to the 3.58~$mu_mathrm{B}$ for free Pr$^{3+}$, indicating that the crystal field ground state is magnetic and the missing moment is associated with the resolution limited quasi-elastic line. The magnetic order occurring in Pr in PFA is counter-intuitive to the symmetry-allowed crystal field level scheme, hence, is suggestive of exchange-mediated mechanisms of ordering stemming from the magnetic ground state of the crystal field levels.
We report $^{51}$V nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) measurements on a quasi-1D antiferromagnet BaCo$_2$V$_2$O$_8$ under transverse field along the [010] direction. The scaling behavior of the spin-lattice relaxa
We revisited the anisotropy of the heavy-fermion material CeCo$_2$Ga$_8$ by measuring the electrical resistivity and magnetic susceptibility along all the principal $mathbf{a}$-, $mathbf{b}$- and $mathbf{c}$-axes. Resistivity along $mathbf{c}$-axis (
In a quantum spin liquid, the magnetic moments of the constituent electron spins evade classical long-range order to form an exotic state that is quantum entangled and coherent over macroscopic length scales [1-2]. Such phases offer promising perspec
The magnetic, thermodynamic and electrical/thermal transport properties of the caged-structure quasi-skutterudite Gd$_3$Ir$_4$Sn$_{13}$ are re-investigated. The magnetization $M(T)$, specific heat $C_p(T)$ and the resistivity $rho(T)$ reveal a double
Magnetic materials with pyrochlore crystal structure form exotic magnetic states due to the high lattice frustration. In this work we follow the effects of coupling of the lattice and electronic and magnetic degrees of freedom in two Praseodymium-bas