ترغب بنشر مسار تعليمي؟ اضغط هنا

Bethe Ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions

250   0   0.0 ( 0 )
 نشر من قبل Murray Batchelor
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the exact periodic Bethe Ansatz solution for one-dimensional bosons and fermions with delta-interaction and arbitrary internal degrees of freedom to the case of hard wall boundary conditions. We give an analysis of the ground state properties of fermionic systems with two internal degrees of freedom, including expansions of the ground state energy in the weak and strong coupling limits in the repulsive and attractive regimes.



قيم البحث

اقرأ أيضاً

We use the coordinate Bethe ansatz to study the Lieb-Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particl es in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics.
332 - O. Babelon , B. Doucot 2011
The Jaynes-Cummings-Gaudin model describes a collection of $n$ spins coupled to an harmonic oscillator. It is known to be integrable, so one can define a moment map which associates to each point in phase-space the list of values of the $n+1$ conserv ed Hamiltonians. We identify all the critical points of this map and we compute the corresponding quadratic normal forms, using the Lax matrix representation of the model. The normal coordinates are constructed by a procedure which appears as a classical version of the Bethe Ansatz used to solve the quantum model. We show that only elliptic or focus-focus singularities are present in this model, which provides an interesting example of a symplectic toric action with singularities. To explore these, we study in detail the degeneracies of the spectral curves for the $n=1$ and $n=2$ cases. This gives a complete picture for the image of the momentum map (IMM) and the associated bifurcation diagram. For $n=2$ we found in particular some lines of rank 1 which lie, for one part, on the boundary of the IMM, where they behave like an edge separating two faces, and which go, for another part, inside the IMM.
181 - Eldad Bettelheim 2015
We give integral equations for the generating function of the cummulants of the work done in a quench for the Kondo model in the thermodynamic limit. Our approach is based on an extension of the thermodynamic Bethe ansatz to non-equilibrium situation s. This extension is made possible by use of a large $N$ expansion of the overlap between Bethe states. In particular, we make use of the Slavnov determinant formula for such overlaps, passing to a function-space representation of the Slavnov matrix . We leave the analysis of the resulting integral equations to future work.
77 - Pascal Grange 2017
The discrete polymer model with random Boltzmann weights with homogeneous inverse gamma distribution, introduced by Seppalainen, is studied in the case of a polymer with one fixed and one free end. The model with two fixed ends has been integrated by Thiery and Le Doussal, using coordinate Bethe Ansatz techniques and an analytic-continuation prescription. The probability distribution of the free energy has been obtained through the replica method, even though the moments of the partition sum do not exist at all orders due to the fat tail in the distribution of Boltzmann weights. To extend this approach to the polymer with one free end, we argue that the contribution to the partition sums in the thermodynamic limit is localised on parity-invariant string states. This situation is analogous to the case of the continuum polymer with one free end, related to the Kardar--Parisi--Zhang equation with flat boundary conditions and solved by Le Doussal and Calabrese. The expansion of the generating function of the partition sum in terms of numbers of strings can also be transposed to the log-gamma polymer model, with the induced Fredholm determinant structure. We derive the large-time limit of the rescaled cumulative distribution function, and relate it to the GOE Tracy--Widom distribution. The derivation is conjectural in the sense that it assumes completeness of a family of string states (and expressions of their norms already used in the fixed-end problem) and extends heuristically the order of moments of the partition sum to the complex plane.
We describe a method for exactly diagonalizing clean $D$-dimensional lattice systems of independent fermions subject to arbitrary boundary conditions in one direction, as well as systems composed of two bulks meeting at a planar interface. Our method builds on the generalized Bloch theorem [A. Alase et al., Phys. Rev. B 96, 195133 (2017)] and the fact that the bulk-boundary separation of the Schrodinger equation is compatible with a partial Fourier transform operation. Bulk equations may display unusual features because they are relative eigenvalue problems for non-Hermitian, bulk-projected Hamiltonians. Nonetheless, they admit a rich symmetry analysis that can simplify considerably the structure of energy eigenstates, often allowing a solution in fully analytical form. We illustrate our extension of the generalized Bloch theorem to multicomponent systems by determining the exact Andreev bound states for a simple SNS junction. We then analyze the Creutz ladder model, by way of a conceptual bridge from one to higher dimensions. Upon introducing a new Gaussian duality transformation that maps the Creutz ladder to a system of two Majorana chains, we show how the model provides a first example of a short-range chiral topological insulator hosting topological zero modes with a power-law profile. Additional applications include the complete analytical diagonalization of graphene ribbons with both zigzag-bearded and armchair boundary conditions, and the analytical determination of the edge modes in a chiral $p+ip$ two-dimensional topological superconductor. Lastly, we revisit the phenomenon of Majorana flat bands and anomalous bulk-boundary correspondence in a two-band gapless $s$-wave topological superconductor. We analyze the equilibrium Josephson response of the system, showing how the presence of Majorana flat bands implies a substantial enhancement in the $4pi$-periodic supercurrent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا