ترغب بنشر مسار تعليمي؟ اضغط هنا

Reservoir Computing on the Hypersphere

60   0   0.0 ( 0 )
 نشر من قبل Mircea Andrecut Dr
 تاريخ النشر 2017
والبحث باللغة English
 تأليف M. Andrecut




اسأل ChatGPT حول البحث

Reservoir Computing (RC) refers to a Recurrent Neural Networks (RNNs) framework, frequently used for sequence learning and time series prediction. The RC system consists of a random fixed-weight RNN (the input-hidden reservoir layer) and a classifier (the hidden-output readout layer). Here we focus on the sequence learning problem, and we explore a different approach to RC. More specifically, we remove the non-linear neural activation function, and we consider an orthogonal reservoir acting on normalized states on the unit hypersphere. Surprisingly, our numerical results show that the systems memory capacity exceeds the dimensionality of the reservoir, which is the upper bound for the typical RC approach based on Echo State Networks (ESNs). We also show how the proposed system can be applied to symmetric cryptography problems, and we include a numerical implementation.



قيم البحث

اقرأ أيضاً

Reservoir computing is a best-in-class machine learning algorithm for processing information generated by dynamical systems using observed time-series data. Importantly, it requires very small training data sets, uses linear optimization, and thus re quires minimal computing resources. However, the algorithm uses randomly sampled matrices to define the underlying recurrent neural network and has a multitude of metaparameters that must be optimized. Recent results demonstrate the equivalence of reservoir computing to nonlinear vector autoregression, which requires no random matrices, fewer metaparameters, and provides interpretable results. Here, we demonstrate that nonlinear vector autoregression excels at reservoir computing benchmark tasks and requires even shorter training data sets and training time, heralding the next generation of reservoir computing.
We analyze the practices of reservoir computing in the framework of statistical learning theory. In particular, we derive finite sample upper bounds for the generalization error committed by specific families of reservoir computing systems when proce ssing discrete-time inputs under various hypotheses on their dependence structure. Non-asymptotic bounds are explicitly written down in terms of the multivariate Rademacher complexities of the reservoir systems and the weak dependence structure of the signals that are being handled. This allows, in particular, to determine the minimal number of observations needed in order to guarantee a prescribed estimation accuracy with high probability for a given reservoir family. At the same time, the asymptotic behavior of the devised bounds guarantees the consistency of the empirical risk minimization procedure for various hypothesis classes of reservoir functionals.
There is a wave of interest in using unsupervised neural networks for solving differential equations. The existing methods are based on feed-forward networks, {while} recurrent neural network differential equation solvers have not yet been reported. We introduce an unsupervised reservoir computing (RC), an echo-state recurrent neural network capable of discovering approximate solutions that satisfy ordinary differential equations (ODEs). We suggest an approach to calculate time derivatives of recurrent neural network outputs without using backpropagation. The internal weights of an RC are fixed, while only a linear output layer is trained, yielding efficient training. However, RC performance strongly depends on finding the optimal hyper-parameters, which is a computationally expensive process. We use Bayesian optimization to efficiently discover optimal sets in a high-dimensional hyper-parameter space and numerically show that one set is robust and can be used to solve an ODE for different initial conditions and time ranges. A closed-form formula for the optimal output weights is derived to solve first order linear equations in a backpropagation-free learning process. We extend the RC approach by solving nonlinear system of ODEs using a hybrid optimization method consisting of gradient descent and Bayesian optimization. Evaluation of linear and nonlinear systems of equations demonstrates the efficiency of the RC ODE solver.
73 - P. Tandon 2016
Performance of nuclear threat detection systems based on gamma-ray spectrometry often strongly depends on the ability to identify the part of measured signal that can be attributed to background radiation. We have successfully applied a method based on Principal Component Analysis (PCA) to obtain a compact null-space model of background spectra using PCA projection residuals to derive a source detection score. We have shown the methods utility in a threat detection system using mobile spectrometers in urban scenes (Tandon et al 2012). While it is commonly assumed that measured photon counts follow a Poisson process, standard PCA makes a Gaussian assumption about the data distribution, which may be a poor approximation when photon counts are low. This paper studies whether and in what conditions PCA with a Poisson-based loss function (Poisson PCA) can outperform standard Gaussian PCA in modeling background radiation to enable more sensitive and specific nuclear threat detection.
We address the problem of learning of continuous exponential family distributions with unbounded support. While a lot of progress has been made on learning of Gaussian graphical models, we are still lacking scalable algorithms for reconstructing gene ral continuous exponential families modeling higher-order moments of the data beyond the mean and the covariance. Here, we introduce a computationally efficient method for learning continuous graphical models based on the Interaction Screening approach. Through a series of numerical experiments, we show that our estimator maintains similar requirements in terms of accuracy and sample complexity compared to alternative approaches such as maximization of conditional likelihood, while considerably improving upon the algorithms run-time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا