ﻻ يوجد ملخص باللغة العربية
The structure of the $^9$Be low-lying spectrum is studied within the cluster model $alpha+alpha+n$. In the model the total orbital momentum is fixed for each energy level. Thus each level is determined as a member of the spin-flip doublet corresponding to the total orbital momentum ($L^pi=0^+, 2^+,4^+, 1^-, 2^-,3^-, 4^-$) of the system. The Ali-Bodmer potential (model E) is applied for the $alphaalpha$ interaction. We employ a local $alpha n$ potential which was constructed to reproduce the $alpha-n$ scattering data. The Pauli blocking is simulated by the repulsive core of the $s$-wave components of these potentials. Configuration space Faddeev equations are used to calculate the energy of the bound state ($E_{cal.}$=-1.493 MeV v.s. $E_{exp.}$=-1.5735 MeV) and resonances. A variant of the method of analytical continuation in the coupling constant is applied to calculate the energies of low-lying levels. Available $^9$Be spectral data are satisfactorily reproduced by the proposed model.
The structure of the Borromean nucleus $^9$Be ($alpha+alpha+n$) is addressed within a three-body approach using the analytical transformed harmonic oscillator method. The three-body formalism provides an accurate description of the radiative capture
The study of inelastic scattering and multi-nucleon transfer reactions was performed by bombarding a $^{9}$Be target with a $^3$He beam at an incident energy of 30 MeV. Angular distributions for $^9$Be($^3$He,$^3$He)$^{9}$Be, $^9$Be($^3$He,$^4$He)$^{
The spatial structure of $^{14}$N nucleus is studied within a five-particle model (three $alpha$-particles plus two nucleons). Using the variational approach with Gaussian bases, the ground-state energy and wave function are calculated for this five-
The previous Faddeev calculation of the two-alpha plus Lambda system for 9 Lambda Be is extended to incorporate the spin-orbit components of the SU_6 quark-model baryon-baryon interactions. We employ the Born kernel of the quark-model Lambda N LS int
The cross section of the $^{9}$Be(n,$gamma$)$^{10}$Be reaction was calculated in the direct capture model. All parameters of the calculations were adjusted to properties of the $^{9}$Be + n system at thermal energies. The calculated cross section at