ﻻ يوجد ملخص باللغة العربية
The cross section of the $^{9}$Be(n,$gamma$)$^{10}$Be reaction was calculated in the direct capture model. All parameters of the calculations were adjusted to properties of the $^{9}$Be + n system at thermal energies. The calculated cross section at thermonuclear energies shows the expected $1/v$ behavior of $s$-wave capture at low energies, but increases towards higher energies as typical $p$-wave capture. Excellent agreement between new experimental data in the astrophysically relevant energy region and the present calculation is found.
The dissociation features in nuclear track emulsion of $^9$Be, $^{9,10}$C, and $^{12}$N nuclei of 1.2 A GeV energy are presented. The data presented for the nucleus $^9$Be can be considered as evidence that there is a core in its structure in the for
The $^3$He($alpha$,$gamma$)$^7$Be reaction is a widely studied nuclear reaction; however, it is still not understood with the required precision. It has a great importance both in Big Bang nucleosynthesis and in solar hydrogen burning. The low mass n
We propose a new approach to probe the spatial extension of the valence neutron orbital in the $^{9}$Be nucleus via the ${}^{9}$Be($p,pn$)${}^{8}$Be knockout reaction. This property of the nuclear molecular orbital has not been established in previou
The study of inelastic scattering and multi-nucleon transfer reactions was performed by bombarding a $^{9}$Be target with a $^3$He beam at an incident energy of 30 MeV. Angular distributions for $^9$Be($^3$He,$^3$He)$^{9}$Be, $^9$Be($^3$He,$^4$He)$^{
We reexamine the spin-orbit splitting of 9 Lambda Be excited states in terms of the SU_6 quark-model baryon-baryon interaction. The previous folding procedure to generate the Lambda alpha spin-orbit potential from the quark-model Lambda N LS interact