ﻻ يوجد ملخص باللغة العربية
We deal with the symmetries of a (2-term) graded vector space or bundle. Our first theorem shows that they define a (strict) Lie 2-groupoid in a natural way. Our second theorem explores the construction of nerves for Lie 2-categories, showing that it yields simplicial manifolds if the 2-cells are invertible. Finally, our third and main theorem shows that smooth pseudofunctors into our general linear 2-groupoid classify 2-term representations up to homotopy of Lie groupoids.
In this paper, a notion of a principal $2$-bundle over a Lie groupoid has been introduced. For such principal $2$-bundles, we produced a short exact sequence of VB-groupoids, namely, the Atiyah sequence. Two notions of connection structures viz. stri
We study vector bundles over Lie groupoids, known as VB-groupoids, and their induced geometric objects over differentiable stacks. We establish a fundamental theorem that characterizes VB-Morita maps in terms of fiber and basic data, and use it to pr
We develop a ready-to-use comprehensive theory for (super) 2-vector bundles over smooth manifolds. It is based on the bicategory of (super) algebras, bimodules, and intertwiners as a model for 2-vector spaces. We show that our 2-vector bundles form a
We determine the extent to which the collection of $Gamma$-Euler-Satake characteristics classify closed 2-orbifolds. In particular, we show that the closed, connected, effective, orientable 2-orbifolds are classified by the collection of $Gamma$-Eule
Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These are prime examples of infinite-dimensional Lie groups mod