ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct measurement of the quantum state of photons in a cavity

64   0   0.0 ( 0 )
 نشر من قبل Xin-Qi Li
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme to measure the quantum state of photons in a cavity. The proposal is based on the concept of quantum weak values and applies equally well to both the solid-state circuit and atomic cavity quantum electrodynamics (QED) systems. The proposed scheme allows us to access directly the superposition components in Fock state basis, rather than the Wigner function as usual in phase space. Moreover, the separate access feature held in the direct scheme does not require a global reconstruction for the quantum state, which provides a particular advantage beyond the conventional method of quantum state tomography.

قيم البحث

اقرأ أيضاً

The ability to generate mode-engineered single photons to interface with disparate quantum systems is of importance for building a quantum network. Here we report on the generation of a pulsed, heralded single photon source with a sub-GHz spectral ba ndwidth that couples to indium arsenide quantum dots centered at 942 nm. The source is built with a type-II PPKTP down-conversion crystal embedded in a semi-confocal optical cavity and pumped with a 76 MHz repetition rate pulsed laser to emit collinear, polarization-correlated photon pairs resonant with a single quantum dot. In order to demonstrate direct coupling, we use the mode-engineered cavity-SPDC single-photon source to resonantly excite an isolated single quantum dot.
Entanglement and wave function description are two of the core concepts that make quantum mechanics such a unique theory. A method to directly measure the wave function, using Weak Values, was demonstrated by Lundeen et al., Nature textbf{474}, 188(2 011). However, it is not applicable to a scenario of two disjoint systems, where nonlocal entanglement can be a crucial element since that requires obtaining the Weak Values of nonlocal observables. Here, for the first time, we propose a method to directly measure a nonlocal wave function of a bipartite system, using Modular Values. The method is experimentally implemented for a photon pair in a hyper-entangled state, i.e. entangled both in polarization and momentum degrees of freedom.
We study a disordered ensemble of quantum emitters collectively coupled to a lossless cavity mode. The latter is found to modify the localization properties of the dark eigenstates, which exhibit a character of being localized on multiple, noncontigu ous sites. We denote such states as semi-localized and characterize them by means of standard localization measures. We show that those states can very efficiently contribute to coherent energy transport. Our paper underlines the important role of dark states in systems with strong light-matter coupling.
One drawback of conventional quantum state tomography is that it does not readily provide access to single density matrix elements, since it requires a global reconstruction. Here we experimentally demonstrate a scheme that can be used to directly me asure individual density matrix elements of general quantum states. The scheme relies on measuring a sequence of three observables, each complementary to the last. The first two measurements are made weak to minimize the disturbance they cause to the state, while the final measurement is strong. We perform this joint measurement on polarized photons in pure and mixed states to directly measure their density matrix. The weak measurements are achieved using two walk-off crystals, each inducing a polarization-dependent spatial shift that couples the spatial and polarization degree of freedom of the photons. This direct measurement method provides an operational meaning to the density matrix and promises to be especially useful for large dimensional states.
Photons are the ideal carriers of quantum information for communication. Each photon can have a single qubit or even multiple qubits encoded in its internal quantum state, as defined by optical degrees of freedom such as polarization, wavelength, tra nsverse modes, etc. Here, we propose and experimentally demonstrate a physical process, named quantum state fusion, in which the two-dimensional quantum states (qubits) of two input photons are combined into a single output photon, within a four-dimensional quantum space. The inverse process is also proposed, in which the four-dimensional quantum state of a single photon is split into two photons, each carrying a qubit. Both processes can be iterated, and hence may be used to bridge multi-particle protocols of quantum information with the multi-degree-of-freedom ones, with possible applications in quantum communication networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا