ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics and Control of Edge States in Laser-driven Graphene Nanoribbons

83   0   0.0 ( 0 )
 نشر من قبل Andrea Bertoni
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An intense laser field in the high-frequency regime drives carriers in graphene nanoribbons (GNRs) out of equilibrium and creates topologically-protected edge states. Using Floquet theory on driven GNRs, we calculate the time evolution of local excitations of these edge states and show that they exhibit a robust dynamics also in the presence of very localized lattice defects (atomic vacancies), which is characteristic of topologically non-trivial behavior. We show how it is possible to control them by a modulated electrostatic potential: They can be fully transmitted on the same edge, reflected on the opposite one, or can be split between the two edges, in analogy with Hall edge states, making them promising candidates for flying-qubit architectures.

قيم البحث

اقرأ أيضاً

We prescribe general rules to predict the existence of edge states and zero-energy flat bands in graphene nanoribbons and graphene edges of arbitrary shape. No calculations are needed. For the so-called {it{minimal}} edges, the projection of the edge translation vector into the zigzag direction of graphene uniquely determines the edge bands. By adding extra nodes to minimal edges, arbitrary modified edges can be obtained. The edge bands of modified graphene edges can be found by applying hybridization rules of the extra atoms with the ones belonging to the original edge. Our prescription correctly predicts the localization and degeneracy of the zero-energy bands at one of the graphene sublattices, confirmed by tight-binding and first-principle calculations. It also allows us to qualitatively predict the existence of $E e 0$ bands appearing in the energy gap of certain edges and nanoribbons.
We study the interplay between the edge states and a single impurity in a zigzag graphene nanoribbon. We use tight-binding exact diagonalization techniques, as well as density functional theory calculations to obtain the eigenvalue spectrum, the eige nfunctions, as well the dependence of the local density of states (LDOS) on energy and position. We note that roughly half of the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize with the impurity state, and the corresponding eigenvalues are shifted with respect to their unperturbed values. The maximum shift and hybridization occur for a state whose energy is inverse proportional to the impurity potential; this energy is that of the impurity peak in the DOS spectrum. We find that the interference between the impurity and the edge gives rise to peculiar modifications of the LDOS of the nanoribbon, in particular to oscillations of the edge LDOS. These effects depend on the size of the system, and decay with the distance between the edge and the impurity.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics. Zigzag graphene nanoribbons (ZGNRs), quasi one-dimensional semiconductin g strips of graphene featuring two parallel zigzag edges along the main axis of the ribbon, are predicted to host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width. Despite recent advances in the bottom-up synthesis of atomically-precise ZGNRs, their unique electronic structure has thus far been obscured from direct observations by the innate chemical reactivity of spin-ordered edge states. Here we present a general technique for passivating the chemically highly reactive spin-polarized edge states by introducing a superlattice of substitutional nitrogen-dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunneling spectroscopy reveal a giant spin splitting of the low-lying nitrogen lone-pair flat bands by a large exchange field (~850 Tesla) induced by the spin-polarized ferromagnetically ordered edges of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.
A central question in the field of graphene-related research is how graphene behaves when it is patterned at the nanometer scale with different edge geometries. Perhaps the most fundamental shape relevant to this question is the graphene nanoribbon ( GNR), a narrow strip of graphene that can have different chirality depending on the angle at which it is cut. Such GNRs have been predicted to exhibit a wide range of behaviour (depending on their chirality and width) that includes tunable energy gaps and the presence of unique one-dimensional (1D) edge states with unusual magnetic structure. Most GNRs explored experimentally up to now have been characterized via electrical conductivity, leaving the critical relationship between electronic structure and local atomic geometry unclear (especially at edges). Here we present a sub-nm-resolved scanning tunnelling microscopy (STM) and spectroscopy (STS) study of GNRs that allows us to examine how GNR electronic structure depends on the chirality of atomically well-defined GNR edges. The GNRs used here were chemically synthesized via carbon nanotube (CNT) unzipping methods that allow flexible variation of GNR width, length, chirality, and substrate. Our STS measurements reveal the presence of 1D GNR edge states whose spatial characteristics closely match theoretical expectations for GNRs of similar width and chirality. We observe width-dependent splitting in the GNR edge state energy bands, providing compelling evidence of their magnetic nature. These results confirm the novel electronic behaviour predicted for GNRs with atomically clean edges, and thus open the door to a whole new area of applications exploiting the unique magnetoelectronic properties of chiral GNRs.
171 - Z. Fei , M. D. Goldflam , J.-S. Wu 2015
We report on nano-infrared (IR) imaging studies of confined plasmon modes inside patterned graphene nanoribbons (GNRs) fabricated with high-quality chemical-vapor-deposited (CVD) graphene on Al2O3 substrates. The confined geometry of these ribbons le ads to distinct mode patterns and strong field enhancement, both of which evolve systematically with the ribbon width. In addition, spectroscopic nano-imaging in mid-infrared 850-1450 cm-1 allowed us to evaluate the effect of the substrate phonons on the plasmon damping. Furthermore, we observed edge plasmons: peculiar one-dimensional modes propagating strictly along the edges of our patterned graphene nanostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا