ﻻ يوجد ملخص باللغة العربية
Empirical simulations based on extrapolations from well-established low-frequency ($< 5$ GHz) surveys fail to accurately model the faint, high frequency ($>10$~GHz) source population; they under-predict the number of observed sources by a factor of two below $S_{18~rm GHz} = 10$ mJy and fail to reproduce the observed spectral index distribution. We suggest that this is because the faint radio galaxies are not modelled correctly in the simulations and show that by adding a flat-spectrum core component to the FRI sources in the SKA Simulated Skies, the observed 15-GHz source counts can be reproduced. We find that the observations are best matched by assuming that the fraction of the total 1.4-GHz flux density which originates from the core varies with 1.4-GHz luminosity; sources with 1.4-GHz luminosities $< 10^{25} rm W , Hz^{-1}$ require a core fraction $sim 0.3$, while the more luminous sources require a much smaller core fraction of $5 times 10^{-4}$. The low luminosity FRI sources with high core fractions which were not included in the original simulation may be equivalent to the compact `FR0 sources found in recent studies.
The S3-Tools are a set of Python-based routines and interfaces whose purpose is to provide user-friendly access to the SKA Simulated Skies (S3) set of simulations, an effort led by the University of Oxford in the framework of the European Unions SKAD
We have combined determinations of the epoch-dependent star formation rate (SFR) function with relationships between SFR and radio (synchrotron and free-free) emission to work out detailed predictions for the counts and the redshift distributions of
(Abridged) We present maps for various Galactic longitudes and latitudes at 1.4 GHz, which is the frequency where deep SKA surveys are proposed. The maps are about 1.5 deg in size and have an angular resolution of about 1.6 arcsec. We analyse the map
The missing baryons are usually thought to reside in galaxy filaments as warm-hot intergalactic medium (WHIM). From previous studies, giant radio galaxies are usually associated with galaxy groups, which normally trace the WHIM. We propose observatio
The Shapley Concentration ($zapprox0.048$) covers several degrees in the Southern Hemisphere, and includes galaxy clusters in advanced evolutionary stage, groups of clusters in the early stages of merger, fairly massive clusters with ongoing accretio