ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of low energy ionization signals from Compton scattering in a CCD dark matter detector

75   0   0.0 ( 0 )
 نشر من قبل Karthik Ramanathan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An important source of background in direct searches for low-mass dark matter particles are the energy deposits by small-angle scattering of environmental $gamma$ rays. We report detailed measurements of low-energy spectra from Compton scattering of $gamma$ rays in the bulk silicon of a charge-coupled device (CCD). Electron recoils produced by $gamma$ rays from $^{57}$Co and $^{241}$Am radioactive sources are measured between 60 eV and 4 keV. The observed spectra agree qualitatively with theoretical predictions, and characteristic spectral features associated with the atomic structure of the silicon target are accurately measured for the first time. A theoretically-motivated parametrization of the data that describes the Compton spectrum at low energies for any incident $gamma$-ray flux is derived. The result is directly applicable to background estimations for low-mass dark matter direct-detection experiments based on silicon detectors, in particular for the DAMIC experiment down to its current energy threshold.

قيم البحث

اقرأ أيضاً

We present results from the first measurement of axial range components of fiducialized neutron induced nuclear recoil tracks using the DRIFT directional dark matter detector. Nuclear recoil events are fiducialized in the DRIFT experiment using tempo ral charge carrier separations between different species of anions in 30:10:1 Torr of CS$_2$:CF$_4$:O$_2$ gas mixture. For this measurement, neutron-induced nuclear recoil tracks were generated by exposing the detector to $^{252}$Cf source from different directions. Using these events, the sensitivity of the detector to the expected axial directional signatures were investigated as the neutron source was moved from one detector axis to another. Results obtained from these measurements show clear sensitivity of the DRIFT detector to the axial directional signatures in this fiducialization gas mode.
We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons ($<$24 keV) from a $^{124}$Sb-$^{9} $Be photoneutron source, and their ionization signal is measured down to 60 eV electron equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency is found to deviate from the extrapolation to low energies of the Lindhard model. This measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a dark matter direct detection experiment located in the SNOLAB underground laboratory.
We discuss several low-energy backgrounds to sub-GeV dark matter searches, which arise from high-energy particles of cosmic or radioactive origin that interact with detector materials. We focus on Cherenkov radiation, transition radiation, and lumine scence or phonons from electron-hole pair recombination, and show that these processes are an important source of backgrounds at both current and planned detectors. We perform detailed analyses of these backgrounds at several existing and proposed experiments. We find that a large fraction of the observed single-electron events in the SENSEI 2020 run originate from Cherenkov photons generated by high-energy events in the Skipper-CCD, and from recombination photons generated in a phosphorus-doped layer of the same instrument. In a SuperCDMS HVeV 2020 run, Cherenkov photons produced in the sensor holders likely explain the origin of most of the events containing 2 to 6 electrons. At SuperCDMS SNOLAB, Cherenkov radiation from radioactive contaminants in Cirlex could dominate the low-energy backgrounds. For EDELWEISS, Cherenkov or luminescence backgrounds are subdominant to their observed event rate, but could still limit the sensitivity of their future searches. We also point out that Cherenkov radiation, transition radiation, and recombination could be a significant source of backgrounds at future experiments aiming to detect dark-matter via scintillation or phonon signals. The implications of our results for sub-GeV dark-matter searches and for the design of future detectors are significant. In particular, several design strategies to mitigate these backgrounds can be implemented, such as minimizing non-conductive materials near the target, implementing active and passive shielding, and using multiple detectors. Finally, we speculate on the implications of our results for the development of quantum computers and neutrino detectors.
The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing $beta$/$gamma$ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related $alpha$ backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10$^{-46}$ cm$^2$ will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T.
We use a science-grade Skipper Charge Coupled Device (Skipper-CCD) operating in a low-radiation background environment to develop a semi-empirical model that characterizes the origin of single-electron events in CCDs. We identify, separate, and quant ify three independent contributions to the single-electron events, which were previously bundled together and classified as ``dark counts: dark current, amplifier light, and spurious charge. We measure a dark current, which depends on exposure, of (5.89+-0.77)x10^-4 e-/pix/day, and an unprecedentedly low spurious charge contribution of (1.52+-0.07)x10^-4 e-/pix, which is exposure-independent. In addition, we provide a technique to study events produced by light emitted from the amplifier, which allows the detectors operation to be optimized to minimize this effect to a level below the dark-current contribution. Our accurate characterization of the single-electron events allows one to greatly extend the sensitivity of experiments searching for dark matter or coherent neutrino scattering. Moreover, an accurate understanding of the origin of single-electron events is critical to further progress in ongoing R&D efforts of Skipper and conventional CCDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا