ﻻ يوجد ملخص باللغة العربية
The chemical content of the planetary nebula NGC 3918 is investigated through deep, high-resolution (R~40000) UVES at VLT spectrophotometric data. We identify and measure more than 750 emission lines, making ours one of the deepest spectra ever taken for a planetary nebula. Among these lines we detect very faint lines of several neutron-capture elements (Se, Kr, Rb, and Xe), which enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up in the progenitor star of NGC 3918.
We present deep, high-resolution (R~40000) UVES at VLT spectrophotometric data of the planetary nebula NGC 3918. This is one of the deepest spectra ever taken of a planetary nebula. We have identified and measured more than 700 emission lines and, in
(Abridged) The chemical content of the planetary nebula NGC 3918 is investigated through deep, high-resolution UVES at VLT spectrophotometric data. We identify and measure more than 750 emission lines, making ours one of the deepest spectra ever take
The production of the elements heavier than iron via slow neutron captures (the s process) is a main feature of the contribution of asymptotic giant branch (AGB) stars of low mass (< 5 Msun) to the chemistry of the cosmos. However, our understanding
To understand the formation and composition of planetary systems it is important to study their host stars composition since both are formed in the same stellar nebula. In this work we analyze the behaviour of chemical abundances of Cu, Zn, Sr, Y, Zr
The three-dimensional Monte Carlo photoionization code Mocassin has been applied to construct a realistic model of the planetary nebula NGC 3918. Three different geometric models were tried. The effects of the interaction of the diffuse fields comi