ﻻ يوجد ملخص باللغة العربية
Phaseless reconstruction from space-time samples is a nonlinear problem of recovering a function $x$ in a Hilbert space $mathcal{H}$ from the modulus of linear measurements ${lvert langle x, phi_irangle rvert$, $ ldots$, $lvert langle A^{L_i}x, phi_i rangle rvert : i inmathscr I}$, where ${phi_i; i inmathscr I}subset mathcal{H}$ is a set of functionals on $mathcal{H}$, and $A$ is a bounded operator on $mathcal{H}$ that acts as an evolution operator. In this paper, we provide various sufficient or necessary conditions for solving this problem, which has connections to $X$-ray crystallography, the scattering transform, and deep learning.
For a wide family of even kernels ${varphi_u, uin I}$, we describe discrete sets $Lambda$ such that every bandlimited signal $f$ can be reconstructed from the space-time samples ${(fastvarphi_u)(lambda), lambdainLambda, uin I}$.
The multipath radio channel is considered to have a non-bandlimited channel impulse response. Therefore, it is challenging to achieve high resolution time-delay (TD) estimation of multipath components (MPCs) from bandlimited observations of communica
A notion of band limited functions is considered in the case of the hyperbolic plane in its Poincare upper half-plane $mathbb{H}$ realization. The concept of band-limitedness is based on the existence of the Helgason-Fourier transform on $mathbb{H}$.
We study neutrino-nucleus charged-current reactions on finite nuclei for the situation in which an outgoing muon and a proton are detected in coincidence, i.e., we focus on semi-inclusive cross sections. We limit our attention to one-body current int
One-time memories (OTMs) are simple tamper-resistant cryptographic devices, which can be used to implement one-time programs, a very general form of software protection and program obfuscation. Here we investigate the possibility of building OTMs usi