ﻻ يوجد ملخص باللغة العربية
We study structural and electronic properties of graphene grown on SiC substrate using scanning tunneling microscope (STM), spot-profile-analysis low energy electron diffraction (SPA-LEED) and angle resolved photoemission spectroscopy (ARPES). We find several new replicas of Dirac cones in the Brillouin zone (BZ). Their locations can be understood in terms of combination of basis vectors linked to SiC 6x6 and graphene 6xsqrt(3) x 6sqrt(3) reconstruction. Therefore these new features originate from the Moie caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cones replicas are caused by underlying weak modulation of the ionic potential by the substrate that is then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single and tri-layer graphene, therefore the additional Dirac cones are intrinsic features rather than result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.
We study the interplay between lateral confinement and photon-induced processes on the electronic properties of illuminated graphene nanoribbons. We find that by tuning the device setup (edges geometries, ribbon width and polarization direction), a l
We investigate the electronic band structure of an undoped graphene armchair nanoribbon. We demonstrate that such nanoribbon always has a gap in its electronic spectrum. Indeed, even in the situations where simple single-electron calculations predict
We introduce a new method to continuously map inhomogeneities of a moire lattice and apply it to large-area topographic images we measure on open-device twisted bilayer graphene (TBG). We show that the variation in the twist angle of a TBG device, wh
The use of Floquet theory combined with a realistic description of the electronic structure of illuminated graphene and graphene nanoribbons is developed to assess the emergence of non-adiabatic and non-perturbative effects on the electronic properti
Stability and electronic properties of atomic layers of GaN are investigated in the framework of the van der Waals-density functional theory. We find that the ground state of the layered GaN is a planar graphene-like configuration rather than a buckl