ترغب بنشر مسار تعليمي؟ اضغط هنا

An Overview of Multi-Task Learning in Deep Neural Networks

169   0   0.0 ( 0 )
 نشر من قبل Sebastian Ruder
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Sebastian Ruder




اسأل ChatGPT حول البحث

Multi-task learning (MTL) has led to successes in many applications of machine learning, from natural language processing and speech recognition to computer vision and drug discovery. This article aims to give a general overview of MTL, particularly in deep neural networks. It introduces the two most common methods for MTL in Deep Learning, gives an overview of the literature, and discusses recent advances. In particular, it seeks to help ML practitioners apply MTL by shedding light on how MTL works and providing guidelines for choosing appropriate auxiliary tasks.



قيم البحث

اقرأ أيضاً

68 - Jed Mills , Jia Hu , Geyong Min 2020
Federated Learning (FL) is an emerging approach for collaboratively training Deep Neural Networks (DNNs) on mobile devices, without private user data leaving the devices. Previous works have shown that non-Independent and Identically Distributed (non -IID) user data harms the convergence speed of the FL algorithms. Furthermore, most existing work on FL measures global-model accuracy, but in many cases, such as user content-recommendation, improving individual User model Accuracy (UA) is the real objective. To address these issues, we propose a Multi-Task FL (MTFL) algorithm that introduces non-federated Batch-Normalization (BN) layers into the federated DNN. MTFL benefits UA and convergence speed by allowing users to train models personalised to their own data. MTFL is compatible with popular iterative FL optimisation algorithms such as Federated Averaging (FedAvg), and we show empirically that a distributed form of Adam optimisation (FedAvg-Adam) benefits convergence speed even further when used as the optimisation strategy within MTFL. Experiments using MNIST and CIFAR10 demonstrate that MTFL is able to significantly reduce the number of rounds required to reach a target UA, by up to $5times$ when using existing FL optimisation strategies, and with a further $3times$ improvement when using FedAvg-Adam. We compare MTFL to competing personalised FL algorithms, showing that it is able to achieve the best UA for MNIST and CIFAR10 in all considered scenarios. Finally, we evaluate MTFL with FedAvg-Adam on an edge-computing testbed, showing that its convergence and UA benefits outweigh its overhead.
Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs ha rdware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D$^2$NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables robust and noise-resilient Multi-task Learning in D$^2$NNs. Our experimental results demonstrate significant improvements in versatility and hardware efficiency, and also demonstrate the robustness of proposed multi-task D$^2$NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task.
XDeep is an open-source Python package developed to interpret deep models for both practitioners and researchers. Overall, XDeep takes a trained deep neural network (DNN) as the input, and generates relevant interpretations as the output with the pos t-hoc manner. From the functionality perspective, XDeep integrates a wide range of interpretation algorithms from the state-of-the-arts, covering different types of methodologies, and is capable of providing both local explanation and global explanation for DNN when interpreting model behaviours. With the well-documented API designed in XDeep, end-users can easily obtain the interpretations for their deep models at hand with several lines of codes, and compare the results among different algorithms. XDeep is generally compatible with Python 3, and can be installed through Python Package Index (PyPI). The source codes are available at: https://github.com/datamllab/xdeep.
334 - Ruoyu Sun , Dawei Li , Shiyu Liang 2020
One of the major concerns for neural network training is that the non-convexity of the associated loss functions may cause bad landscape. The recent success of neural networks suggests that their loss landscape is not too bad, but what specific resul ts do we know about the landscape? In this article, we review recent findings and results on the global landscape of neural networks. First, we point out that wide neural nets may have sub-optimal local minima under certain assumptions. Second, we discuss a few rigorous results on the geometric properties of wide networks such as no bad basin, and some modifications that eliminate sub-optimal local minima and/or decreasing paths to infinity. Third, we discuss visualization and empirical explorations of the landscape for practical neural nets. Finally, we briefly discuss some convergence results and their relation to landscape results.
Multi-task learning (MTL) optimizes several learning tasks simultaneously and leverages their shared information to improve generalization and the prediction of the model for each task. Auxiliary tasks can be added to the main task to ultimately boos t the performance. In this paper, we provide a brief review on the recent deep multi-task learning (dMTL) approaches followed by methods on selecting useful auxiliary tasks that can be used in dMTL to improve the performance of the model for the main task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا