ﻻ يوجد ملخص باللغة العربية
We first examine the scaling argument for a renormalization-group (RG) analysis applied to a system subject to the dimensional reduction in strong magnetic fields, and discuss the fact that a four-Fermi operator of the low-energy excitations is marginal irrespective of the strength of the coupling constant in underlying theories. We then construct a scale-dependent effective four-Fermi interaction as a result of screened photon exchanges at weak coupling, and establish the RG method appropriately including the screening effect, in which the RG evolution from ultraviolet to infrared scales is separated into two stages by the screening-mass scale. Based on a precise agreement between the dynamical mass gaps obtained from the solutions of the RG and Schwinger-Dyson equations, we discuss an equivalence between these two approaches. Focusing on QED and Nambu--Jona-Lasinio model, we clarify how the properties of the interactions manifest themselves in the mass gap, and point out an importance of respecting the intrinsic energy-scale dependences in underlying theories for the determination of the mass gap. These studies are expected to be useful for a diagnosis of the magnetic catalysis in QCD.
We review the current status of the application of the local composite operator technique to the condensation of dimension two operators in quantum chromodynamics (QCD). We pay particular attention to the renormalization group aspects of the formalis
We introduce a systematic approach for the resummation of perturbative series which involve large logarithms not only due to large invariant mass ratios but large rapidities as well. Series of this form can appear in a variety of gauge theory observa
We consider the evolution of critical temperature both for the formation of a pion condensate as well as for the chiral transition, from the perspective of the linear sigma model, in the background of a magnetic field. We developed the discussion for
We use a renormalization group method to treat QCD-vacuum behavior specially closer to the regime of asymptotic freedom. QCD-vacuum behaves effectively like a paramagnetic system of a classical theory in the sense that virtual color charges (gluons)
We investigate the QCD phase diagram for nonzero background magnetic fields using first-principles lattice simulations. At the physical point (in terms of quark masses), the thermodynamics of this system is controlled by two opposing effects: magneti